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ABSTRACT

Server and Agent-based Active Network Management (SAAM) is a promising
network management solution for the Internet of tomorrow, “Next Generation Internet
(NGI).” SAAM is a new network architecture that incorporates many of the latest
features of Internet technologies. The primary purpose of SAAM is managing network
quality of service (QoS) to support the resource-intensive next-generation Internet

applications.

Best effort (BE) traffic will continue to exist in the era of NGI. Thus SAAM
must be able to manage such traffic. In this thesis, we propose a solution for
management of BE traffic within SAAM. With SAAM, it is possible to make a “better
best effort” in routing BE packets. Currently, routers handle BE traffic based solely on
local information or from information obtained by link-state flooding which may not be
reliable. In contrast, SAAM centralizes management at a server where better (more
optimal) decisions can be made. SAAM’s servers have access to accurate topology and
timely traffic-condition information. Additionally, due to their placement on high-end
routers or dedicated machines, the servers can better afford computationally intensive
routing solutions. It is these characteristics that are exploited by the solution design and

implementation of this thesis.
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EXECUTIVE SUMMARY

The Internet was born out of an experimental project in the late 1960’s, funded by
the Advanced Research Projects Agency (ARPA). Since then, the Internet has exploded
into a worldwide phenomenon with millions of hosts to include private citizens,
businesses, schools, governments, and of course, the DoD (the original customer).

The Internet came to be defined by an underlying core technology known as
TCP/IP. This model/protocol has proved immensely scalable in terms of meeting the
data transfer demands of the ever-growing amount of hosts, data, and links; it’s simply a
matter of adding more resources. Unfortunately, there are new demands today above and
beyond “data transfer” that TCP/IP is not built to handle. These are the demands for
Quality of Service (QoS). The TCP/IP model is a “best effort” model. That is, much like
regular mail at the Post Office, the Internet will simply make a best effort to get the data
to where it’s addressed with no explicit guarantee of delivery time or success rate. For
many of today’s cutting edge applications in use by DoD and elsewhere, guarantees of
service quality are required.

A project known as Server and Agent-based Active Network Management
(SAAM) under the Next Generation Internet (NGI) initiative has as its goal the
identification of solutions that could provide guaranteed QoS while still maintaining the
simplicity and robustness of the underlying TCP/IP architecture. As of this writing,
SAAM has done just that. After three years in research and development at the Naval
Postgraduate School, SAAM has become a somewhat comprehensive solution that
addresses not only issues of QoS, but also security, fault-tolerance, and policy
management among others. One of the last areas to be developed for SAAM is its
management of best effort traffic, the type of traffic that exists in the Internet today.

Such interoperability with and management of best effort traffic is required in order for
SAAM to viably deploy and integrate into today’s Internet. That is the topic of this
thesis.

This thesis develops a solution for best effort traffic management to incorporate
into SAAM. First, best effort traffic management is researched through open sources for

critical evaluation of previously developed ideas and whether or not they are applicable
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to the SAAM model. Next, the SAAM architecture is studied in order to leverage
SAAM’s core strengths and ensure the best fit for a modular solution. Finally, the
solution is designed, developed, integrated into SAAM, and tested for satisfactory
performance. Conclusions are drawn and recommendations are made for possible future

work in refining best effort traffic management for SAAM.
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I. INTRODUCTION

A. MOTIVATION

The SAAM architecture has been and is currently being designed with NGI in
mind for which increasingly sophisticated applications will be provided QoS guarantees
for their data flows within a region of SAAM routers. Research on SAAM revolved
around various QoS parameters and path constraints and how to manage those constraints
in terms of Admission Control and Resource Management. If the Internet would
instantly transform into the so-called NGI, this would be the end of the matter. All traffic
would be preceded by resource reservation requests (a “flow request”) to a SAAM server.
Of course, as with most new computer network technology, it would be naive to imagine
a flip-of-the-switch technology conversion and forego any consideration of backwards

compatibility.

If SAAM were deployed as is, on the assumption that all flows will be preceded
by flow requests or reside within an aggregate Differentiated Service (DiffServ) level, a
number of adverse consequences could arise. For one, a user internal to a SAAM region
may be unnecessarily denied service until someone proficient with the SAAM client
software can properly configure his/her device. For something as simple as viewing a
static web page or sending an email message, such effort is questionable. Second, an
autonomous system (AS) adopting the SAAM architecture may inadvertently violate
service level agreements with neighboring AS’s for carrying transit traffic. In reality,
some of the applications on internal hosts and border routers in external Internet regions
will continue to operate on the same assumption underlying today’s Internet, the best
effort model. The traffic these applications send and receive is known as best effort
traffic. While specialized protocols and data exchange methods abound, it is universally
understood and assumed that best effort (BE) traffic, when sent, will be handled
according to uniform standards set forth by the Internet Engineering Task Force (IETF).
Indeed, misbehavior by these standards can be punishable through “black holing,”
whereby Internet names and address entries are removed from the governing hierarchy

tables, a logical severance from communications with the rest of the Internet.
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The question to be explored here is the manner in which to handle BE traffic.
Presumably, clients of a SAAM network provider will still have demand for BE services.
While these may not generate as much revenue as QoS streams per unit of bandwidth
consumed, SAAM must handle this traffic in a satisfactory manner to meet the needs of
the customer and the expectations of the universal Internet. Further, the client will expect
at least the same guarantee for BE traffic that the Internet already provides: a best effort

(i.e., SAAM cannot arbitrarily drop or misroute packets unless constrained).

Until now, the question of how to characterize and handle BE traffic within a
SAAM region has been left unanswered, but not locked out. That is, SAAM already has
a couple of building blocks within its architecture into which BE traffic could be easily
shoehorned. Indeed, these building blocks were designed as possible hooks with an eye
towards reaching an ultimate solution in the future. Now that the cement is drying on the
fundamental QoS portion of the architecture (SAAM’s charter), a look towards how to
now incorporate BE management into the total solution is appropriate. One possibility
has always been SAAM’s DiffServ solution. Conventionally, DiffServ has been divided
into aggregate levels of standard QoS guarantees. One division, familiarly known as the
“Olympic model of DiffServ” is Gold, Silver, and Bronze. If Bronze’s QoS guarantee
was simply best effort with no regard for delay, bandwidth, jitter, or loss rate, than this
could be the service level to encapsulate BE traffic. The SAAM region would have to be
pre-configured such that every end-to-end path (or point-to-point link in a slightly
different scheme) would have an existing approved Bronze flow. The second solution is
static provision of links. SAAM currently sets initial bandwidth reservations on each link
for Control Traffic, Integrated Service (IntServ), DiffServ, Best Effort, Unallocated, and
Out-of-Profile. As shown in Figure 1, BE receives an initial 15% of the link in this
scheme. While the provisions for IntServ and DiffServ are dynamic (they change with
load conditions), the provision for best effort is fixed at 15%. This allocation is a
minimum since BE can also use whatever bandwidth QoS is not fully utilizing at the
time. In earlier SAAM design efforts, BE’s provision was set at 20% in order to prevent
starvation of BE traffic [8]. Later, this level was reduced to 15% as part of the inter-

service borrowing solution developed in [9]. No testing has been conducted on any
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Internet service provider (ISP) to verify the suitability of this provision. However,
historical BE utilization levels on the Internet’s backbone are known to be approximately
10%. More importantly, these are just example allocations for use within the current

prototype.

Unallocated
40%

IntServ
20% DiffServ
15%
Control Channel Best Effort
10% Out of Profile/ 15%
0%
Figure 1. Base Allocation per Service Level (From [9])

Essentially, BE has a network unto itself, a carbon copy of the underlying
topology with at least 15% of the bandwidth. Within the SAAM research group, one
solution proposed has been to let the legacy routing protocols and programs of today stay
resident and handle that part of the network management. This has some obvious
drawbacks. Primarily, it would relegate the SAAM solution to being an add-on module
and prevent it from being a total integrated solution. The ability to function as a module
on a device rather than completely “owning” the device necessitates at least one more
software interface layer and more complexity for the underlying OS to manage calls to
the hardware. Increased complexity usually translates to decreases in scalability, speed,
or efficiency. In the area of computing, this is always true when another interface layer is

inserted between an application and the underlying hardware.

SAAM needs to be a total solution so that it can completely control an underlying
network and thereby maximize the speed and efficiency, not to mention the overall
simplicity of that network’s architecture. SAAM’ is agent-based whereby specialized
agents can be deployed at run-time to devices needing to handle special situations.
Therefore, it is tempting to argue that SAAM can be deployed lacking certain
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compatibilities since, as the Internet and technologies change, new agents can simply be
developed, released, and deployed as needed. This may be advisable for those obscure
technologies and protocols that are still emerging or in decline. For something as
essential as handling BE traffic, however, functionality should be provided with the

initial release.

Two level server hierarchy

<__ =
Source
Destination
@ router @ SAAM server - example data path
Figure 2. SAAM Hierarchy (From [12])

As seen in Figure 2, SAAM is organized into a hierarchy of controlling servers
over underlying SAAM regions of routers. The servers provide the points of centralized
management, while the routers provide the labor for routing packets. The servers are the
heavyweight decision makers that maintain large amounts of data and perform the
processing required to make computationally intensive decisions based on that data. The
routers, on the other hand, are lightweight performing simple packet forwarding and
reporting tasks. From the ground up, this division of labor has been designed with QoS
management in mind. The hierarchy of servers coordinates to meet QoS guarantees by
coordinating resource usage within and between the SAAM regions. The routers simply

install agents or routing table entries sent to them by the servers. While it seems a simple



task at the router level, they are an integral part of a coordinated and complex decision

(made by a server above them) process that intelligently provides QoS.

Traditionally, BE traffic management has been performed in an opposite manner.
Routers are alone and must act autonomously on decisions as to where they should
forward packets. The process centers on nothing more than a single packet at a single
moment in time. That is, the decision doesn’t involve any variable or historic data other
then a single entry in a lookup table. The router builds this table from either a human
administrator or from a peer router that is directly neighboring or intraregional. Still, the
routers remain distributed autonomous systems answering to no one except those with
access to the physical device. As such, these routers tend to behave in a greedy fashion
when it comes to routing BE traffic. Their routing decisions will be that which seems
best based on their own router-centric algorithm. This decision may not be the best
interest for the greater network or for the end users who are depending on a particular
data flow. Enter SAAM with its sophisticated management capabilities for a network
region and the Internet at large. Surely, there must be some way for SAAM to leverage
its centralized management to handle BE traffic in a better fashion than the organized

chaos of distributed routers in a network acting autonomously.

If SAAM did take on the task of recognizing and managing BE traffic flowing
within its regions, there would be limitless possibilities for the method of
accomplishment. While a router in today’s Internet must make routing decisions based
on late, sometimes inaccurate information, SAAM maintains comprehensive information
about the regions it manages that is only slightly time-late. Minus any NP-complete
problem, therefore, the server should be able to make better decisions than a distributed
router operating with incomplete information. SAAM could do something as simple and
unimaginative as using a shortest path (SP) algorithm to route its BE traffic, as is done by
most routers today. If nothing else, this method would have the advantage of making
routers more lightweight. However, as occurs in networks using this scheme, this can
cause undue congestion on interior, critical (defined in [17]) links, whose bandwidth may
be inadequate to support periods of high demand. It also fails to capitalize on most of the

information that is maintained by the server. Finally, it is a static solution not becoming
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of SAAM where information is kept up-to-date allowing dynamic measures, both

proactive and reactive.

The current Internet BE model is built on simply making a best effort to get
packets to their ultimate destination. As David Isenberg puts it in [7], “just deliver the
bits, stupid.” This issue is a small one that exists at that single point in time and space
when a nameless router somewhere in the Internet receives a faceless packet and decides
how to send it on its way. Perhaps SAAM could go further and tackle some of the
broader issues as well. SAAM tracks traffic network-wide, providing for refereeing
traffic condition and ensuring fairness in scheduling. Since it maintains global
information about network resources, SAAM should also be able to ensure better
utilization of those resources than a collection of routers running greedy algorithms with
local information. Finally, when a failure occurs, a SAAM router has an ally an Internet
router does not: the SAAM server. The SAAM region should be able to deal better with
issues of fault tolerance than a stand-alone router.

B. PROBLEM STATEMENT AND APPROACH

The development of SAAM is nearly complete. SAAM has the capabilities to
take control of a region of routers and handle QoS traffic by establishing servers and
deploying router agents. These features answer the challenge of SAAM’s original
charter. Still, even as Internet Protocol Version 4 (IPv4) has yet to be replaced (or even
slightly displaced) by IPv6, so also it is recognized that the need to handle BE traffic will

exist for the foreseeable future.

The overarching research question we address here is that, if it were to do so, how
should SAAM handle BE traffic? More specifically, how can SAAM handle BE traffic
while maintaining its guarantees to QoS flows and minimizing congestion of the BE
traffic? Further, since all nodes are potentially equal customers with equal rights
(excluding those who have purchased QoS guarantees), how can SAAM enforce some

degree of fairness in the event of insufficient resources for high volumes of BE traffic?

The approach to answering these questions begins with research. First, broad
research is conducted with a general survey of past and current methods for routing BE

traffic. Next, research focuses on those solutions that are being developed today for
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problems similar to SAAM’s: handling BE traffic over QoS networks. Finally, plausible

solutions are studied in detail for concepts applicable to a SAAM implementation.

Once promising concepts are identified and isolated, the next step is to build a
solution that will fit in conceptually and be able to integrate practically into the SAAM
project. This starts with conceptual mapping of concepts into design diagrams followed
by a parsing of that abstract representation into object schema. From there, it is simply a
matter of translating identified objects into actual software objects to run on the SAAM
test-bed. For most SAAM development, such translation is accomplished through the
Java programming language with which all of SAAM’s core components have been

developed.

Once the solution is built into SAAM, then simulation testing begins by building
test scenarios which will validate certain key portions of the BE traffic management
solution. These scenarios are constructed using the Extensible Markup Language
(XML). Easily modifiable XML files facilitate the iterative design process by allowing
concrete identification of goals through actual scenarios that present the problem

situation(s).

Finally, results of testing are analyzed to determine whether any further changes
are necessary to the solution. Once the iterative design process is complete, final results
are collected and analyzed for conclusions. Evaluating the project as a whole with the
new BE traffic solution, recommendations are made for areas of future research and
improvement.

C. THESIS SCOPE

The scope of this thesis will be a research survey of existing solutions for BE
traffic over QoS in NGI-type models and then development of a creative and superior
solution that builds on the unique capabilities provided by the SAAM architecture. This

new solution will then be implemented and tested in the existing SAAM prototype.

Specifically, this solution examines management of BE traffic beginning and
ending in the ISO OSI Network layer in routers within a SAAM region. This thesis does
not develop a solution for routing BE packets beyond the borders of the SAAM region,



though consideration is given to making a follow-on solution to address this easy to
implement. In addition, this thesis does not develop an interface for handling BE traffic
on a SAAM router that originates within or is destined for the ISO OSI Application layer
outside of the SAAM software.
D. CONTRIBUTIONS OF THIS THESIS

1. Major Contributions

A solution for managing BE traffic has been developed and incorporated into the
DARPA and NASA sponsored SAAM project at Naval Postgraduate School. The
solution developed is presented as “a” BE solution for SAAM; no claims are made to the
effect of being “the” best solution possible. Several areas invite further research and/or
possible improvement.

2. Minor Contributions

The simulation environment for SAAM has been enhanced to facilitate the testing
conducted as part of this thesis. First, the flow generator developed in [11] has been
modified to allow packet count as a test parameter. Second, a simulation delay time has
been incorporated into the test code that causes data rate to accurately match link speed.
Finally, the server code has been modified to make the server better recognize network
failures during simulation.
E. THESIS ORGANIZATION

The remainder of the thesis is organized as follows:

* Chapter II provides the background to this thesis work. Underlying
concepts fundamental to traditional routing are discussed as well as more

recent work in the field.

*  Chapter III details the thought process behind building the BE solution for
SAAM.

e Chapter IV describes the implementation details of incorporating the

developed solution into SAAM.

e Chapter V presents the testing and results obtained in evaluating the

solution.



e Chapter VI contains the conclusions and recommendations based on the

overall thesis work.
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II. BACKGROUND

A. BEST EFFORT VS. QUALITY-OF-SERVICE TRAFFIC

In today’s Internet, traffic is largely of a datagram based form known as best
effort [13]. As the Internet evolved from a small network of government and educational
hosts into the sprawling internetwork of hosts it is today, the single guiding design
principle has been connectivity. New hosts, routers, and domains were continually added
in an ad hoc fashion with the only requirement being to maintain connectivity. The rest
of the Internet needed a physical and logical connection to these new identities and vice
versa. There was no widespread concern for bandwidth, security, QoS, or extensibility of

underlying protocols.

Generally, guidelines and technology decisions for the Internet’s development
were sanctioned and published by non-profit, non-authoritative organizations such as the
Internet Engineering Task Force (IETF). Submission to these guidelines was largely
voluntary. The one de facto paradigm that emerged was best effort, the only expectation
that a user can have of the Internet as a whole. Sites on the Internet are connected and
intermediate routers will make a best effort to get each packet to its destination. In other
words, connectivity and minimum cooperation in routing are the only things that can be

counted upon in today’s Internet.

For simple data traffic, where the only concern is having packets traverse from
point A to point B eventually, this best effort model has proven adequate. However, there
are many other forms of traffic that are rapidly growing in volume for which a best effort
is not sufficient. These forms of traffic require guarantees of a requisite quality of
service, whether minimum bandwidth, maximum delay or loss rate, or a maximum delay
variation. A partial list of these forms of traffic includes voice, video, and real-time data.

Together these forms are called quality-of-service (QoS) traffic.

When the only promise a network can make is a best effort, QoS traffic
encounters several classic performance problems. A BE network cannot guarantee

bandwidth and so high volume traffic applications may find themselves bottlenecked. A
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BE network will only take the packet from point A to point B with no guarantee of trip
time. Obviously, for traffic that is time sensitive, this is unsatisfactory. In a BE network,
all packets are treated equally so that, at a congested point in the network, packets will be
arbitrarily dropped. For most BE applications running over TCP, these dropped packets
will be detected and resent with little or no degradation of performance in the end user
application. For some QoS applications, however, exceeding a threshold loss rate (as low

as zero in some cases) can degrade performance significantly.

If no expenses are spared, bandwidth and delay requirements can always be met
through providing additional network resources. However, this does not solve the
problem of delay jitter. For a radio signal in the air, continuous information transmitted
at discrete intervals will be received with the same intervals between them. This is
important for tightly synchronized information streams among others. Unfortunately, BE
traffic over the Internet can be much more erratic than a radio signal and exhibit jitter
(also referred to as delay variation) where there may be significantly different delay
intervals between successive packets in a data stream from source to destination.

B. BEST EFFORT ROUTING IN TODAY’S INTERNET

In today’s Internet, information is broken up into and then transmitted as packets.
Appended to these packets are headers, which contain, among other things, source and
destination addresses. These packets are then routed to their destinations by routers.
Routers perform the task (for BE traffic) of examining a packet’s header and then sending

it to the next hop in the network based on an entry in the router’s routing table.

For all the research conducted and sophistication introduced into this simple
model of table lookup, it remains a question of how to populate these routing tables with
more intelligent, or optimal, information than a human being’s manually configured best
guess. Many routers continue the dumb task of examining and forwarding packets while
presumably some intelligence, human or machine, is populating these tables to make all
the routing decisions happened with the greater good (global optimization) in mind.
Some routers are more intelligent, incorporating a routing protocol that enables them to

modify their routing tables based on information received from their peers.
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The problem of routing can be framed a number of ways. On a static basis, there
are underlying graph theory problems. A network is expressed as a graph with nodes and
links between nodes. Well-known algorithms can be applied to the graph expression to
compute solutions to sub-problems such as shortest path, maximum flow, or minimum
spanning tree. The routing problem can also be viewed as one of artificial intelligence
where each router must autonomously gather information and make inferences,
ultimately building a routing table from scratch. Finally, there is the dynamic aspect of
traffic engineering. Traffic engineering generally refers to optimization of changing
levels of traffic over routes that are themselves dynamic. For networks, traffic

engineering is concerned with the performance optimization of operational networks [1].

To date, no single routing solution has transcended the entire Internet. As a
whole, a static solution is difficult to develop because the Internet’s topology is ever
changing. Similarly, a dynamic solution would require a large amount of computing
power to manage the vast number of nodes and links along with a global mechanism for
implementing the solution. In theory, either of these solutions is possible (e.g., use of an
oracle with infinite computing resources). However, at present, real systems do not have
the resources or enforcement mechanisms to do so. No single solution is required as the
Internet has naturally grown into a form amenable to a divide-and-conquer approach: that
of multiple interconnected domains, or AS’s. Within one of these AS’s, an intradomain
solution is applied that can be uniformly implemented within the domain. Since the
entire AS is often known and administered as a whole, very specialized solutions can be
developed without assumptions being made about the physical hardware or level of
cooperation among the nodes. Between AS’s, however, a more robust, interdomain
solution has to be applied whereby border routers communicate to share simple

reachability information, either informally or through service level agreements (SLA’s).

1. Intradomain Routing
a. Static Configuration

The oldest and least imaginative solution for BE routing within a domain
is static configuration, where a router’s table entries are manually set and do not change

automatically. This requires complete knowledge of the network and the labor intensive

13



task of logging into each router and through a series of system commands, setting its
table to route packets as desired. There is no room for error as a single incorrect digit in a
single routing table can logically disconnect the entire network. Further, the network
cannot be reconfigured (adding or changing position of nodes and links) without
repeating the entire static configuration.

b. Distance Vector Protocols

Of the automated protocols, the first major classification is known as
“distance vector.” With these simple protocols, a router updates a vector data structure
for each of its neighbors, which contains entries for destination address versus a single
metric, usually hop count. Routers communicate with their immediate neighbors and
share their distance vectors through a relationship of implicit trust. Each router updates
its distance vectors and then through some comparison of metrics (e.g., which neighbor
has shortest advertised hop count to a destination), updates its routing table entries for
each destination. As these information broadcasts are periodic, distance vector protocols

allow for dynamic conditions with no need of manual reconfiguration.

Of the distance vector protocols, Routing Information Protocol (RIP) has
enjoyed preeminence during the early growth of the Internet. RIP continues to be widely
implemented today despite new proprietary technologies from Cisco and other companies
that are superior in some technical aspects. RIP uses a simple hop count metric for route
computation and in some implementations, specialized techniques known as split horizon
and poison reverse to eliminate loops and hasten convergence after topology changes.
RIP’s major drawbacks are its hop count limit of 16 and simplistic path weighting (1 hop
= 1 distance unit). This has spurred development of more sophisticated distance vector
protocols that address these shortcomings. Still, if its inclusion into the Internet Protocol
Version 6 (IPv6) standards development process is any indication, RIP will be around for
a long time yet.

c. Link State Protocols

The other major classifications of automatic routing protocols are the link
state protocols. These are more complicated than the distance vectors in a number of

ways. First, rather than just obtaining and trusting information from its immediate
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neighbors, a router will obtain information from every other router in the network.
Second, rather than selecting routes based on a simple metric comparison, a router will
build a graphical representation of the network from the information it receives and then
use shortest path algorithms to determine the next hop for each destination. For this
reason, link state algorithms are sometimes referred to as shortest-path first algorithms
[3]. Overall, link state algorithms are more computationally intensive and require more
information sharing than distance vector protocols. Indeed, link state information has to
be flooded onto a network to ensure every single router receives every other router’s link
state information. Usually, this involves many redundant message transmissions. The
number of hosts and acceptable bandwidth overhead are usually considered when tuning

the link state flooding frequency.

The premier link state protocol is the Open Shortest Path First (OSPF)
Interior Gateway Protocol, developed by the IETF to replace RIP. OSPF was designed
with scalability and rapid convergence in mind [3]. Rather than constantly flooding
redundant information, OSPF only advertises on topology changes and at that, only sends
changed information. Apart from this, short “I’'m alive” messages are exchanged
infrequently to verify established connections. OSPF is more sophisticated than RIP in
that its path metric can be set to something besides hop count. The most popular choice
is a number inversely proportional to bandwidth so that small links will be preferentially
avoided due to their large weighting. Finally, OSPF introduces a technique known as
traffic splitting where traffic is divided along multiple equivalent (i.e., equal metric)
paths.
2. Interdomain Routing
Intradomain routing solutions handle traffic that is sent and received within a
single AS. However, in many networks, particularly those belonging to commercial
ISP’s, such traffic is not the prevalent form. Most packets are part of network sessions
with another host somewhere else in the greater Internet, not in this AS. These packets
must first seek out one of their AS’s border routers, also known as border gateways.
From there, these packets typically travel through one or more other AS’s to the Internet

backbone and then through another one or more AS’s before reaching its destination. As
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the Internet is a much more loosely organized collection of hosts, a robust protocol is

needed that does not require the trust or cooperation that RIP or OSPF does.

The two most prevalent protocols for interdomain routing are the Exterior
Gateway Protocol (EGP) and the Border Gateway Protocol (BGP). The protocols are
similar in that they operate through neighboring AS border routers sharing reachability
information. Essentially, when a border router receives an outbound packet from its AS,
it needs to determine by which neighboring border router that destination is reachable.
EGP was the precursor to BGP and is rapidly being phased out due to scalability issues.
Specifically, EGP assumes the Internet is still arranged (it once was) in a tree-like
topology. EGP fails in those regions of the Internet that are now mesh-like. BGP, on the
other hand, allows all the Internet’s AS’s to be connected arbitrarily. BGP only presumes
router memory space as the amount of reachability information can be overwhelming

(64MB, for example, is no longer sufficient without some form of route aggregation).

Reachability information consists of enumerated long lists of sequential domains
that are next hops to each other in the Internet. A BGP router will receive such an AS
sequence, append its own AS to that sequence, and then advertise this new information to
neighbors. Loops are avoided by checking new AS sequence lists to ensure a BGP’s own
AS number is not already included. This does not prevent selecting a long route when
shorter routes exist, only loops. Still, the protocol’s current version has controls such as
Local Preference and Multiexit Discriminator, which allow for the prioritization of route
information. Finally, as the Internet continues its exponential growth and exhausts a
router’s limited memory, BGP allows route aggregation where it can generalize
downstream information. A consequence of this might be lower preference from those
border routers implementing the most-specific-first method of route selection.

C. THE STATE OF THE ART

The Internet is still a BE, IPv4 internetwork. Until organizations upgrade their
networks to use IPv6 or an overall QoS-based architecture emerges, neither of which are
guaranteed to happen, research and development will continue work on designing new

solutions and improving existing solutions for BE traffic in the Internet’s current
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architecture. Even the Internet2 consortium acknowledges that their solution will not
replace the Internet [6].

1. Routing Solutions

While RIP, OSPF, and other protocols have proved sufficient for routing BE
packets, research continues in search of greater efficiencies, optimization, and other
criteria such as congestion avoidance and resolution. Ultimately, such research focuses
on building a better routing algorithm, finding better inputs for existing algorithms, or

making better use of algorithm outputs.

Shortest path protocols such as OSPF typically use a well-known routing
algorithm. Among these, Dijkstra’s algorithm is the most popular and more importantly,
unexceeded in terms of computational efficiency (scales on order of nlogn). The
algorithm visits each node in turn and builds a shortest-path tree to all other nodes by
sequentially linking the nearest node, updating the computed distance of the unlinked
nodes, and repeating continually until the tree is built. In its simplest form, these
distances are single, static values that describe something about the links between nodes.
In this form, the problem is tractable. However, if the distance values change from scalar
to vector or if a single path constraint is applied, the problem becomes NP-hard, or
intractable. Obtaining near-optimal solutions in these instances requires the application

of heuristics, or settling for some best solution obtained after a computational time limit.

Therefore, mathematical research focuses on how to choose these heuristics.
Operationally, research is done on how best to tune a network by adjusting path weights.
For those solutions that allow path weights to change dynamically with traffic conditions,
another variable is considered: time constant. Networks that respond too quickly or with
too much of an adjustment for a change in conditions can experience instability.
Instability describes the situation where a network undergoes large swings in traffic
conditions while attempting to correct itself; it never converges on a new solution. Part
of this is the classical control theory problem of setting the time constant too small to
allow the last error correction to effect feedback. It is also compounded in networks
where many routers may be acting autonomously to correct the same problem. Without

coordination amongst themselves, they may be continually shifting traffic from
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previously congested areas and creating new areas of congestion so that their algorithms

will be constantly hunting and sabotaging each other’s solutions.

Some of the other routing algorithms developed are sequential selection of
different metrics over single-metric algorithms such as Dijkstra’s. For example, the
shortest widest path (SWP) algorithm is actually Dijkstra’s algorithm with inverse
bandwidth as the metric. “Shortest” refers to the tie-breaking aspect of selection among
equally wide paths. Widest shortest path (WSP) is the reverse. Another method applied
in these instances is to develop a new metric that is a function of multiple inputs. For
example, a metric may be developed that is a function of a link’s bandwidth and delay.
Once these two are combined into a single value, the problem becomes tractable with an

optimal solution obtainable through Dijkstra’s or other algorithm.

Besides modifying the algorithms or their inputs, it is also possible to change how
outputs are used. Shortest-path routing has usually involved selecting the single shortest
path to a destination and then routing all of that destination’s traffic onto that one path.
One of the first alternatives to be proposed was a method called equal cost multipath
(ECMP) wherein if the routing algorithm found multiple shortest routes of equal cost,
then traffic would be evenly split along those paths. One of the main drawbacks of this
method is the potential for fragmenting a TCP session where supposedly equal paths
actually have delay differentials large enough to cause packets to arrive out of order. One
suggestion [2] to correct this is to split traffic based on a hashed IP address to ensure
same-session traffic follows the same route. Besides ECMP, other solutions involve
splitting traffic to a destination along the next shortest route(s).

2. Management Solutions

Another area of research is the management aspect of BE traffic. Currently, there
is no management in the Internet without specialized devices. The Internet’s de facto
hardware consists of IP routers. The lowest common denominator IP router has no
management capability. It simply examines IP headers of packets, performs a table look-

up, and forwards those packets as fast as its switch fabric or line speed will allow.

For this reason, TCP/IP ascended to be the combined standard relied upon by

hosts communicating over the Internet. TCP performs the end-to-end management of a
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session that does not exist in the underlying IP protocol. Whereas without TCP, a user
can have no expectations about packet loss rate or timing, TCP will step in front of IP and
present to the user or application the full transmission of packets in the proper order.
TCP simply tracks a session on a packet-by-packet basis and performs retransmission or

reordering when needed. This is management on the user end.

TCP also performs an important form of management for the Internet at large
known as TCP rate control. Even if a group of IP routers unintelligently sends all of their
traffic over the same path and fails to respond to resulting congestion, TCP will cause the
end-to-end sessions comprising that traffic to throttle back on the send rates. While at
first seeming a luxury, this single mechanism is the only thing protecting the Internet
from congestion collapse [4]. Congestion collapse describes the situation where a
network’s bandwidth is almost exclusively occupied by packets that are discarded

because of congestion before they reach their destination.

This form of control continues to work today because the majority of Internet
applications run on TCP. Contending TCP flows cooperate and reduce their transmission
rates while non-TCP flows continue unimpeded and take advantage of the TCP
applications’ selflessness. Today, the majority of applications run on TCP. However, the
number of audio/video applications is growing and it is feared that this will cause the

percentage of non-TCP traffic to grow [14].

The questionable reliance on cooperation continues to drive the end-to-end versus
router-based management debate. End-to-end management is simpler. By refining the
TCP protocol and hoping that everyone will use it, congestion can be managed by the
hosts at each end of the session. The IETF has even mandated that non-TCP applications
be TCP-friendly. That is, those applications that do not use TCP should not offer more
traffic load than a similar TCP application would under like conditions. The issue here is
fairness. Unfortunately, there is no current way to enforce this mandate. IP routers treat
traffic as aggregate and do not currently incur the processing or overhead required to
determine if anyone is behaving in an unfriendly manner. Therefore, malicious users can

deliver barrages of non-TCP packets with impunity. Even with TCP, a malicious user
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can launch redundant sessions or parallel sessions to grab more than his/her fair share

despite rate control.

Router control, on the other hand, could potentially enforce some degree of
fairness. At the very least, it would require a switch from aggregate scheduling to per-
flow queuing. Even then, a flow would have to be reclassified to an IP address-to-
address level rather than a TCP port-to-port level to overcome the problem mentioned
above. For a router take on management functions, it would have to track state. Most IP
routers are treated as being stateless in that they do not keep track of past state.
Conversely, stateful router tracks some state over time and requires memory to do this.

This state may be data about a specific data flow, class of flows, or type of traffic.

Currently, only small groups of routers take on management functions and then
only for QoS traffic with solutions varying among proprietors. For BE traffic in the
greater Internet, there is no router-based management solution. TCP continues to be
relied on for all management aspects of the BE flows while the underlying IP routers
perform the menial task of packet forwarding.

3. Traffic Engineering

For most of the Internet’s lifetime, technicians have tackled problems at the
physical level and described those problems in very concrete terms. If there was any
engineering involved, it was electrical engineering. As the Internet grew and the amount
of data exchange increased, problems were alleviated by a “bigger, better, faster, more”
strategy through provision of equipment. The physical layer was the focus and the actual
data traffic was treated like weather: something that must be dealt with but cannot be

controlled in and of itself.

Recently, a new construct and vernacular have emerged to frame the problem
differently. It is called traffic engineering. Network traffic engineering is a more
strategic approach than tactical hardware upgrades. The IETF has demonstrated their
commitment to this approach by establishing the Traffic Engineering Working Group
(TEWG) with its Internet Traffic Engineering Charter.
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The TEWG has continued to develop and refine the concept through publication
of various Requests for Comment (RFC’s) and Internet Drafts. In May of 2001, the
TEWG released an Internet Draft entitled “A Framework for Internet Traffic
Engineering” in an attempt to solidify some of the concepts and terminology for the
subject.

Internet traffic engineering is defined as that aspect of Internet network

engineering dealing with the issue of performance optimization of

operational IP networks. Traffic Engineering encompasses the application

of technology and scientific principles to the measurement,
characterization, modeling, and control of Internet traffic [19].

Numerous research efforts have focused on traffic engineering and how to incorporate it
into existing protocols through extensions or existing routers through management-

information-base (MIB) design.

Multiprotocol label switching (MPLS) has emerged as one of the foremost
technologies through which traffic engineering can be realized. This is because traffic
engineering makes abstractions of both data and hardware. Instead of discussing packets,
links, and nodes, traffic engineering discusses data as “flows” and “trunks” and physical
hardware as “paths” and “routes.” MPLS readily lends itself to this schema through its
simple mechanism of packet labeling and label-switched paths (LSP’s). In this way,
packets can be labeled according to their administrative handle and links can be colored
according to their administrative policy. For BE traffic, emphasis has been placed on
intelligent labeling and relabeling.

Traffic engineering is needed in the Internet mainly because current

interior gateway protocols always use the shortest paths to forward traffic.

Using shortest paths conserves network resources, but may also cause the
following problems:

The shortest paths from different sources overlap at some links, causing
congestion on those links.

The traffic from a source to a destination exceeds the capacity of the

shortest path, while a longer path between these two routers is
underutilized [16].
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These authors and many others have proposed methods using MPLS to overcome these

problems.

Traffic engineering has led to the introduction of another concept: network
engineering. In July of 2001, the TEWG published an Internet Draft entitled “A
Framework for Internet Network Engineering.” Like traffic engineering, network
engineering addresses the problem of handling Internet traffic at a macroscopic level.
Whereas the focus on traffic engineering was a move away from physical solutions and
towards programmed solutions, network engineering is a move back towards the physical
in that it examines network provisioning. According to the TEWG, they go hand in hand.
In their original treatise on network engineering, the TEWG puts their difference simply:
traffic engineering is putting traffic where the capacity is while network engineering is

putting capacity where the traffic needs it [19].
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III. BUILDING A BETTER BEST EFFORT SOLUTION

A. CURRENT STATE OF SAAM PROTOTYPE

Prior to the work reported in this thesis, SAAM had very little BE capability. In
fact, BE traffic was treated as just another QoS level within the SAAM QoS architecture.
Contrary to what an end user might expect, SAAM required that all BE traffic be part of a
flow and that flow be preceded by a flow request to reserve resources. Once the request
was accepted, then the BE traffic would flow through the SAAM region in a manner
similar to other QoS flows with an assigned flow ID and path ID. At outbound
interfaces, it would be discriminated by the type of service (ToS) bits in its header. This
would channel the BE packets through a lower priority outbound queue (IntServ and

DiffServ traffic take precedence).

With the flow request model, a number of issues arise. The first is that it is a step
back from what is already offered by the Internet for BE traffic. From a user standpoint,
the Internet is “instant on” for BE traffic. Once configured with a proper IP address and
connected to the Internet, nothing more is required to send and receive traffic. With the
flow request model in SAAM, however, the user is burdened with the added requirement
of a flow request and the forethought necessary for determining the parameters of that

request.

Second, there is the issue of waste. For a revenue-generating QoS flow, there is
no waste. The market forces result in a price-driven model in which every request and
hence, resource reservation, is paid for at a price agreeable to the service provider and
user. Unused reservations continue to generate revenue from whoever reserved them.
Unreserved resources retain the potential to be sold in a flow request. Best effort, on the
other hand, which is presumably a free or flat fee service, would waste resources within
its granted provision. All the while, it could be sharing its unused bandwidth with
another BE flow on the same link. Indeed, from an economic standpoint, the entire

provision is a waste if there is no cost for BE flows.
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Finally, SAAM’s requirement of flow requests for all traffic makes it
incompatible with the rest of the Internet. In the Internet, an IP router will examine an
incoming packet’s destination IP address and then make a best effort to forward it,
dropping the packet only if the destination is invalid or unreachable. A SAAM router
will not recognize, let alone route a packet, unless it has been appropriately labeled

according to a previously approved flow request.

Fairness and fault tolerance are two issues that SAAM addresses for QoS traffic.
For both IntServ and DiffServ, fairness is a matter of service contract. Better QoS
parameters are negotiated at a price. SAAM provides reliable fault tolerance for IntServ
flows through advanced rerouting techniques detailed in [15]. For BE however, there is
no fairness or fault tolerance. Equal paying customers may encounter substantially
different BE performance in a SAAM region and SAAM will make no effort to correct
the disparity. As for fault tolerance, a single failure on a BE flow’s path will permanently
disrupt that flow.
B. REQUIREMENTS FOR A BETTER SOLUTION

1. Security

In any effort to make SAAM more interoperable with the Internet’s BE traffic,
security must not be compromised. Specifically, if router behavior is modified such that
non-SAAM packets are recognized and examined, consideration should be given to the
accompanying security problems that may occur such as denial-of-service or any attack
that would use unsolicited BE traffic as a vehicle.

2. Light-Weight Routers

“SAAM consists of light-weight routers and a small set of heavy-weight servers”
[12]. This is one of SAAM’s foundational concepts and is sometimes referred to as the
“smart server, dumb router” model. Any new BE solution must not place significant
computational or memory burden on the router and destroy this model. This eliminates
solutions such as making an OSPF SAAM agent. Router-based algorithms, such as those
required by OSPF, are unacceptable. Therefore, computation and bookkeeping should be
kept at the server whenever possible and any new router functionality should be fairly

simplistic.
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3. Interoperability

Whereas SAAM’s current BE flow request system makes it incompatible with the
current Internet, the new solution should promote interoperability. Specifically, SAAM
routers should recognize and handle generic BE traffic that does not have any QoS
labeling. The ultimate achievement of compatibility would be a solution that allows a
SAAM region to function as a transit AS, allowing transit traffic based on SLA’s with
neighboring AS’s.

4. Fault Tolerance

The new solution should afford some degree of fault tolerance for BE traffic. The
SAAM server maintains a complete picture of its region and there is no good reason why
this knowledge should not be exploited for enhanced fault tolerance. At the very least,
the server’s knowledge could be used to detour a traffic flow around a known failure.

5. Fairness

Fairness is one aspect of BE traffic management that the Internet lacks. SAAM is
able to provide this with its servers acting as arbiters among competing interests. The
new BE solution should tackle the fairness problem along these lines. Specifically, an
attempt should be made to maintain fairness both among flows and among users. In this
context, fairness is defined as ensuring adverse effects are borne as equally as possible
during periods of network congestion.

6. Adaptive Response Mechanisms

Network congestion can sometimes be avoided altogether if the network adapts to
changing conditions by taking preventive or corrective action. Since the SAAM server
maintains an accurate picture of its region and is continuously operating, a new solution
should incorporate an adaptive response mechanism in order to prevent congestion or
alleviate congestion that arises.

7. Stability

Any time a dynamic solution is considered, stability becomes an issue. Therefore,

in designing any type of new intelligence for BE traffic in SAAM that is adaptive and/or
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dynamic, stability must be guaranteed. Specifically, time constants for new processes

should be considered in order to ensure convergence and prevent over-corrections.

8. Intelligent Provisioning

SAAM has complete knowledge of the characteristics of every link and node in
the network. Therefore, an attempt should be made to develop a better solution for BE
provisioning than just assigning shortest-hop paths. One area in particular that should be
examined is how to make use of unused resources during periods of heavy demand.

9. Scalability

Any new solution should not be based on assumption of a SAAM region having
an arbitrarily small number of nodes. Rather, it should allow for growth without internal
processes and data structures becoming unmanageable. Specifically, if a solution based
on underlying BE flows is considered, then a full interior mesh topology should be
avoided if possible.

10. Packet Recovery

For solutions involving edge router discovery, incoming packets should not be
needlessly dropped. Rather, an attempt should be made to requeue and retransmit later if
possible.
C. INSPIRATION

Significant research was conducted prior to translating these requirements into a
design. Many methods of managing BE traffic were surveyed. Those solutions that
involved managing BE traffic in a QoS network were examined closely in a search for
concepts that might be applied to the SAAM architecture for its BE solution. While
many general principles and engineering practices were gleaned as background from
multiple sources, the fundamental idea for SAAM’s design solution comes from one

source in particular.

In 2001, a group of researchers proposed a set of multipath adaptive traffic
engineering (MATE) algorithms designed for traffic engineering in MultiProtocol Label
Switching (MPLS) networks [2]. MPLS is similar to SAAM in that it is a path-based

routing scheme and can be used for QoS management through use of flow labels.
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The developers of MATE over MPLS point out that traffic engineering has been
attempted before through use of shortest-path algorithms, but such solutions suffer from

several limitations:
* Load sharing cannot be accomplished among paths of different costs.
» Traffic/policy constraints are not taken into account.

* Modifications of link metrics to readjust traffic mapping tend to have

network-wide effects causing undesirable and unanticipated traffic shifts.
* Traffic demands must be predictable and known a priori [2].

The MATE developers then propose their state-dependent traffic engineering mechanism

with features to include:
* distributed adaptive load balancing
* end-to-end control between ingress and egress nodes
* no new hardware or protocol requirement in intermediate nodes
* no knowledge of traffic demand required
* no assumption of scheduling or buffer management schemes at nodes
* optimization decision based on path congestion measure
* minimal packet reordering

* 1o clock synchronization between nodes [2]

Of all the methods for BE over QoS that have been studied, it is MATE over
MPLS that provides the foundation for the SAAM solution. Overall, the BE solution for
SAAM is designed to incorporate the routing that is common to RIP and OSPF and the
traffic engineering accomplished by MATE. The main difference between conventional
implementations of these methods and SAAM’s implementation is that SAAM
centralizes intelligence at the server. Whereas an OSPF router calculates routes on its
own, SAAM’s servers calculate the routes in a SAAM region. Whereas a MATE router

determines congestion with probe packets and makes load balancing decisions by itself, a
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SAAM server determines congestion through LSA’s and decides for the routers when to
do load balancing.
D. DESIGN

The design of the new BE traffic management solution capitalizes on the SAAM
architecture; that is, it relies on specialized deployed agents to perform specialized tasks.
Additionally, the server is given a new management module to coordinate the
deployment and operation of these agents. Finally, new messages are created to facilitate

the specialized communications necessary between the servers and agents.
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Figure 3. Old Routing Method (modified from [12])

Previously, only two agents were involved in routing: FI owRout i ngTabl e

and ARPCache. As seen in Figure 3, incoming packets are examined to determine
destination IPv6 address. If the destination is local (i.e., this router), the packet is sent to
the Transport layer.  Otherwise, the Routi ngAl gorithm relies on agents
FI owRout i ngTabl e and ARPCache to determine the appropriate outbound interface
on which to forward the packet. First, the Routi ngAl gorithm calls the

FI owRout i ngTabl e to determine the next hop IPv6 address. Based on that address,
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another call is made, this time to the ARPCache, to determine which outbound interface
that address maps to. This solution does not handle BE traffic. As seen in Figure 3, the
call to the FI owRout i ngTabl e requires that the packet have a flow label containing

path ID information, which can only be obtained through flow requests.
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Figure 4. New Routing Method (modified from [12])

At the router level, a new agent is all that is needed to provide BE functionality.
Now, a simple check to see whether or not the packet is unlabeled BE is made before
calling the Fl owRoutingTable. If the packet is unlabeled BE, then the
Best Ef f ort Tabl e will be called first to obtain the missing flow label (path ID) that
the FI owRout i ngTabl e needs. This only needs to happen once. When a BE packet
receives its label through this process at an ingress to a SAAM region, the label is written
into its IPv6 header and used for the rest of its travel through the region. The routing that
SAAM uses is path-based rather than hop-by-hop. Essentially, the BE packet gets
mapped onto a preinstalled path through the region at the ingress point. That path will
terminate at an interface within the region or at one of the border routers. All
intermediate SAAM routers will recognize that path by means of a preinstalled entry in

their Fl owRout i ngTabl e.
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Figure 5. Server / Edge Router Communication

The solution developed in this thesis requires constant communication between
the SAAM server and the deployed Best Ef f or t Tabl e agents. This happens through
the message exchange shown in Figure 5. LSA’s (a message previously developed in
[12]) are received from all SAAM routers, keeping the server apprised of network
conditions. EdgeNot i fi cati on messages are received from edge routers to key the
server to BE topology changes. Finally, the server controls edge router BE handling

behavior through Congest i onAdvi sory messages.

All of these new components will now be explained more fully.
1. Best Effort Table Agent
The Best Ef f ort Tabl e agent was developed to be the sole additional agent

necessary at a router to handle BE traffic. At its core, the Best Ef f or t Tabl e agent is
a simple lookup table, similar to the Fl owRout i ngTabl e agent. However, the
Best Ef f or t Tabl e has the capability to track multiple entries for a single destination
and perform load-balancing among them when directed by the server.
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Figure 6. A Best Effort Traffic Routing Table
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The Best Ef f ort Tabl e works in concert with the FIl owRout i ngTabl e to
route BE traffic. As seen in Figure 6, the Best Ef f or t Tabl e by itself has insufficient
information to determine a packet’s next hop. Rout i ngAl gori t hmwill recognize BE
traffic at the ingress edge route by virtue of it having no flow label or path ID. At that
time, it will ask the Best Ef f or t Tabl e, if resident, how to handle the packet. The
Best Ef f ort Tabl e, however, will return a pat hl D based on the packet’s destination
IPv6 address. With a path ID, the Rout i ngAl gori t hmwill then be able to route the
packet like regular QoS traffic by referring to the FI owRout i ngTabl e for an actual

next hop address and then its ARPCache for the outbound interface.

The previously unlabeled packet is now labeled in the manner for use by the
SAAM routers. The packet will travel through the region possibly using the same path
shared concurrently by QoS flows. It will be discriminated against in priority queues, but
this is a preexisting mechanism designed to meet QoS traffic bandwidth guarantees. It
only needs special handling at the single ingress edge router. This traffic would have
originated from either an application on the edge router or from outside the domain if the
edge router is also a border router. Either way, it follows a path to an egress edge router
in the SAAM region, which, again, may host a receiving application or be a border
gateway to outside the domain.

a. Destination Management

The Best Ef f ort Tabl e manages traffic on a per-destination basis.
Whenever the Best Ef f ort Tabl e receives new BE routes from the server, it will
either recognize a new destination to manage that it hasn’t seen before or it will add those
routes to its data structure for that pre-existing destination. The Best Ef f ort Tabl e
has room for a full complement of spare routes for each destination. The current
implementation uses just two active routes to each destination, so a 4-route array is used
to hold the active and spare routes. At any given time, the Best Ef f or t Manager will
load balance between its two active routes. If sent a third route, that route will be added
to the table with a split of 0% for that destination. If a fourth route (which may be
identical to the third in some cases) is then sent, the Best Ef f ort Manager will

recognize this as the alternate path for a congestion bypass. Consequently, the first two
31



routes will be set to 0% split, while the previously sent third route is set to handle 100%
of the traffic as the new primary route. The first two routes are retained and remain in the
table. However, if the server sends more routes for this destination, the table wraps
around and these entries are written over.

b. Load Balancing

The Best Ef f ort Tabl e receives multiple entries to a destination in
order to perform load balancing among different parts of the network. It accomplishes
this through the dual behaviors of redirection and reversion. Initially,
Best Ef f or t Tabl e maps all traffic to a destination along a single primary path. This
path is usually shorter and/or wider than the alternate paths by virtue of the performance-
based path-finding algorithm the Best Effort Manager uses for primary paths. Therefore,
it is used preferentially for performance reasons. Once the Best Ef f ort Tabl e is
notified by the server of congestion towards a destination, it begins redirection of traffic.

Redirection involves iteratively shifting traffic to alternate paths.
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Figure 7. Multipath Load Balancing
When the server notifies the Best Ef f or t Tabl e that the congestion has

cleared, the Best Ef f or t Tabl e will initially hold the current split. Then, it will begin
reversion of traffic. This involves iteratively shifting traffic back to the primary path,

which is preferential for performance reasons.
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Redirection and reversion happen with different frequencies. Principally,
redirection is rapid in order to avoid a sustained congestion condition. Reversion is less
urgent as the only concern is gradual optimization during conditions that are already
acceptable and so happens less frequently. Choice of redirection and reversion intervals

1s discussed later in this section.

The Best Ef f ort Tabl e has an additional method of load balancing
that is not a programmed behavior as redirection and reversion are, but rather a
phenomenon resulting from the manner in which it installs new table entries. Whenever
the Best Ef f or t Tabl e receives a new complement of routes toward a destination, it
resets the split for that destination to 100/0. This allows the server to do something that
will be termed here as switchback. By resending the same entries that the
Best Ef f ort Tabl e already has, the server can cause the Best Ef f ort Tabl e to
instantly shift all of its traffic back to the primary path. Otherwise, this would only
happen through numerous reversion intervals.

c. Fault Tolerance

While primarily used for load balancing, the redundant paths are also used
for fault tolerance. When the server notifies the Best Ef f or t Tabl e of a failure in a
path to a destination, the Best Ef f or t Tabl e will immediately switch all traffic onto
the surviving paths.

2. Best Effort Manager
The Best Ef f ort Manager is a new component in the SAAM server which

handles the management of BE traffic from the server end. The Best Ef f or t Manager
relies on three main programmed hooks in the server code to function during operations.
The first is a call whenever the server discovers a new edge router.
Best Ef f or t Manager updates its bookkeeping to track the new router and any
attendant BE traffic. Next is a call whenever the server is receiving an updated link state
advertisement from a SAAM router. Best Ef f or t Manager will examine the reported
loss rate for BE traffic and respond accordingly. Lastly, whenever a network failure

occurs, Best Ef f ort Manager is notified immediately for fault tolerance purposes.
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Best Ef f ort Manager always functions in one of two modes: reactive
monitoring or proactive monitoring. Within these modes, its operations consist of
maintaining a BE topology, deploying paths for BE traffic, sending congestion
advisories, and tracking statistics.

a. Best Effort Topology Maintenance

One key to the overall BE traffic management solution is to be able to
distinguish between edge routers and core routers. It would be simpler to consider every
SAAM router as a potential sender and receiver of BE traffic. This necessitates
deploying enough paths to create a full interior mesh topology because traffic can
originate and end anywhere. This approach is not only wasteful; it hurts the overall
scalability of SAAM. First, not all of these paths are necessary since many, if not most of
the routers, will not be origins or destinations of BE traffic. Second, a mesh involves
deploying 2 * N * (N — 1) paths for a region of N routers which is on the order of N*
growth as new routers are added. N? growth can portend that a solution will not scale
well; if N increases by an order of magnitude, then the solution resources will increase by

two orders of magnitude.

Therefore, the Best Ef f or t Manager carefully tracks and manages just
a subset of the overall SAAM topology, which is the BE topology. It builds this topology
from scratch through a process of edge router discovery. Every router is a core router
initially The SAAM server is notified if a router previously regarded as a core router
needs to be promoted to edge router to handle BE traffic. The SAAM server is also
notified when a regional interface address appears in the IPv6 destination field of BE
packets. In both cases, Best Ef f or t Manager updates a BE topology comprised of
these routers and interfaces. The BE topology is not just a subset, but also an abstraction
of the complete topology maintained by the server. Whereas the server’s topology is
comprised of nodes and links between nodes, the BE topology is comprised of nodes and
paths between nodes. These paths are logical representations of nodes and links not

specifically included in the topology.

In the strictest sense, this BE topology still scales as N just as a mesh

topology would. However, N now maps to just edges rather than all nodes. In the
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Internet, edges are comprised of routers serving as an ISP’s point of presence or a border
gateway. Generally, these routers comprise less than half of the router population.
Therefore, a mesh consisting only of these routers significantly reduces the size of the

topology to be managed, which enhances scalability.

The topology is built by connecting all BE origins to all BE destinations
through two paths. Origins are edge routers. Destinations are interfaces addressed in BE
packets. From this point, the topology is kept up to date in event of new nodes or
interfaces, new path deployment, or path failures.

b. Reactive Monitoring

Reactive monitoring is the default mode of the Best Ef f or t Manager .
During reactive monitoring, the Best EffortManager monitors link state
advertisements for BE traffic loss rate information and then reacts when problems are
detected. Specifically, reactive monitoring is designed to combat local congestion that

can be resolved by a single Best Ef f or t Tabl e agent out in the SAAM region.

When  congestion is  detected between two BE  nodes,
Best Ef f or t Manager will notify the Best Ef f or t Tabl e agent at the source router
to begin load balancing in an attempt to resolve the congestion locally. If it becomes
apparent that load balancing will not resolve the congestion, then the
Best Ef f or t Manager will initiate a procedure called congestion bypass. This entails
the server deploying new paths to that Best Ef f ort Tabl e, which bypass the
congested region of the network. The old paths expire for 30 minutes and will not be
reused for BE traffic during that time. If no available paths remain for congestion
bypass, then the Best Ef f or t Manager declares the network to be globally congested
and initiates global congestion resolution procedures.

c. Proactive Monitoring

Best Ef f or t Manager shifts to proactive monitoring during periods of
global congestion. Proactive monitoring involves continuous statistics tracking and
deliberate actions to effect fairness during times of resource contention.
Best Ef f ort Manager uses statistics to determine which BE traffic is being

inordinately penalized and which BE traffic is receiving more than its fair share.
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After this, Best Ef f ort Manager attempts to enforce fairness through a
“rob from the rich, give to the poor” Robin Hood approach. The “rich” are those
aggregate BE traffic flows that experience a packet loss rate less than one standard
deviation less than the mean packet loss rate. Similarly, the “poor” are those
experiencing a packet loss rate greater than one standard deviation above the mean packet

loss rate.

In robbing from the rich, Best Ef f or t Manager will reclaim that flow’s
least widest path, freeing those resources to alleviate congestion in more heavily
congested flows. In giving to the poor, Best Ef f or t Manager first goes through the
graveyard of expired BE paths (from congestion bypass procedures) and reclaims those
paths which are now congestion free prior to their 30 minute quarantine. Then,
Best Ef f or t Manager determines which of two methods might increase a flow’s
available bandwidth: switching back to the primary path or deployment of a reclaimed
path. If it is switching back to the primary path, Best Ef f or t Manager instructs that
Best Ef f ort Tabl e agent to initiate a switchback. If it is deployment of a reclaimed
path, then Best Ef f ort Manager will deploy reclaimed paths to increase bandwidth
and alleviate congestion. In either case, if an action is taken, Best Ef f or t Manager
will wait one local resolution timeout to allow the problem to resolve before taking
further action. If no action is possible or if all loss rates fall within a single standard
deviation of the mean loss rate, then Best Ef f or t Manager continues with proactive
monitoring until either global congestion disappears or a flow qualifies as rich or poor.

3. Routing Algorithms

Several new routing algorithms have been developed which are designed
specifically with to include BE management capabilities. Specifically, these algorithms
encompass load balancing, congestion bypass, redundancy, fault tolerance, congestion

avoidance, and performance.

Each of these routing algorithms is based on linear search and path comparison of

the server’s path database and applying selective filters. The first-shortest-path (FSP)
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algorithm developed earlier in the SAAM project ([5]) did not meet the needs of the BE
management scheme discussed here.

a. Shortest Widest Path (SWP)

SWP selects the shortest of the widest paths between two nodes. It does
this by first determining the widest paths in terms of bandwidth. If there are multiple

widest paths, then the shortest among those is chosen.

SWP is the algorithm used to deploy initial primary paths for BE traffic
flows. Barring any congestion and assuming sufficient network provision, this is the
algorithm of choice since bandwidth is the number one criteria. Bandwidth is more
valued for BE traffic due simply to the prime goal of congestion avoidance. Delay is not
a concern for BE traffic since if it was, that traffic should have been put into a QoS flow.
The only concern for BE traffic is that it gets to its destination with minimum congestion
along the way. Congestion is best avoided by selecting wide paths from the beginning.

b. Shortest Widest Most Disjoint Path (SWMDP)

SWMDP selects the shortest of the widest of the paths most disjoint
compared to some reference path between two nodes. It does this by first finding the
paths that have the least nodes and links in common with some reference path between
two nodes. Ideally, a path will be found with nothing in common with the reference path
except the first and last node. If multiple paths are found equally most disjoint, then the

widest path is selected. For equal widths, the shortest path is selected.

SWMDP is the algorithm used to deploy all alternate paths (both initial
provision and congestion bypass). Regardless of the algorithm used to deploy the
primary path for a given node pair, SWMDP will be used to select the alternate. The
reason for this is that alternate paths are valued above all else for their use in load
balancing and fault tolerance. Load balancing is more effective between two paths with
no common node or link between source and destination. Indeed, if the two paths did
share a link, and congestion were to occur on that link, then load balancing between the
two paths would do nothing to combat that congestion. Secondly, less fault tolerance is

provided by an alternate path that shares nodes and links with the primary path. Fault
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tolerance dictates that the paths be as independent as possible so that a single failure
might not disable both.

C. Shortest Widest Least Congested Path (SWLCP)

SWLCP selects the shortest of the widest of the least congested paths. It
does this by first determining the least congested path in terms of packet loss rate. If
there are multiple paths of equal congestion, it chooses the widest of those. If necessary

to choose among equal widths, the shortest path will be selected.

SWLCP is used when the Best Ef f ort Manager performs congestion
bypass. If congestion has been detected in the region, then lack of congestion becomes
the number one priority in choosing paths in order to bypass the congestion that exists.
Whereas prior to congestion detection, congestion levels in the region are ignored,
congestion now becomes the main criterion. Ideally, this will result in the under-utilized
network periphery being used in periods of peak demand, easing the load that tends to
develop on the interior critical links.

4. Traffic Splitting

In order to accomplish load balancing, one of the main features of the
Best Ef f ort Tabl e agent, some method of splitting traffic must exist. That is, if the
current traffic split is 30/70 to a primary and alternate path to destination, how is the
30/70 split actually accomplished? The simplest solution would be round robin where
three packets would be sent on the primary path and then seven on the alternate.
However, this method can incur performance penalties for applications requiring packets
to arrive in the order they were sent, since the primary and alternate path may have
significantly different delay times. TCP, for example, will hold packets arriving on the
receiving end prior to presenting them to the Application layer. This process takes time

and processing power.
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Figure 8. Hashing Traffic into Buckets

For BE traffic management in SAAM, a better solution has been developed based
on the suggestion in [2]. Packets are sorted into ten buckets based on a hash of their
source [P address through a modulo-N function (N=10 in this case). These buckets are
then shifted discretely so that a single TCP session, for example, will never know it has
been rerouted. It certainly will not be split. Either the entire session will proceed on the
primary path or the alternate path, never a split between the two. This means that a 30/70
split might not really be 30% and 70%. If, for example, that BE traffic flow is comprised
of two equal traffic sessions between two host pairs, then it must be either 100% on one

path or 50%/50%.
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Figure 9. Load Balancing By Bucket Path Mapping

Hashing traffic into buckets results in a different behavior of the system. When
the Best Ef f or t Tabl e is shifting traffic during load balancing, it is not shifting 10%
at a time, but rather a bucket at a time. If no traffic is in a bucket, then shifting a bucket
has no effect. Conversely, if all the traffic is in a single bucket, shifting that bucket shifts
all of the traffic. With similarly sized buckets, tunability is limited only by number of
buckets and load balancing is realized. If one bucket is much larger than the others,
however, then the solution allows for no more balancing than a single path solution
would since practically, this has the same effect of switching a path for an entire flow.

S. Control Timing

In order to build a stable solution, consideration must be given to timing of the
corrective controls. On one hand, it is useless to act too quickly if the effect of the last
corrective action has not been fully assessed. Another corrective action might be
unnecessary. On the other hand, it is desirable to correct problems as quickly as possible
without needless hesitation. Therefore, there is always a tradeoff between rushing to
correct a problem and waiting to fully evaluate the effect of previous corrections. Over-
correction can lead to instability where a cycle begins of correcting a problem only to

create a new one in the other direction that needs further correction.
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The BE traffic management solution for SAAM presents another concern through
its use of distributed adaptive load balancing. With each of the routers acting
independently to correct congestion, is it possible for destructive interference to occur?
This problem has been noted in other solutions (such as OSPF) where all routers
immediately unload a congested route and move traffic elsewhere, creating a new

congested route.

SAAM’s BE solution mitigates this in three ways. First, while SAAM’s routers
act autonomously during load balancing, they are not synchronized. Therefore, their
corrective actions are usually staggered and less likely to result in network-wide route
flapping. Second, SAAM’s routers do not shift an entire traffic flow at once, but portion
by portion in incremental stages. Lastly, if global congestion occurs, SAAM’s server
takes over, ending distributed autonomous operation and instituting centralized

micromanagement.

The authors in [2] showed that stability can be guaranteed when node pairs
operate asynchronously in a MATE scheme. SAAM’s routers are not as asynchronous as
MATE assumes, but neither are they synchronized. Two effects govern their degree of
synchronicity. First, if the server instructs load balancing to take place on multiple
routers at the same time, the actual time of initiation will only differ by their delay time
from the server. Routers at the same distance from the server will be synchronized. This
synchronism is mitigated by the fact a node pair interrupts its traffic shifting whenever
that traffic flow ceases, even for a single packet interval. This would cause the
previously synchronized pairs to become asynchronous. Should the pairs remain
synchronous due to continuous traffic, however, potential for instability is mitigated by
the fact that the autonomous load balancing at the router only proceeds in one direction at
short time intervals: primary to alternate. Only the server can move traffic from alternate
to primary at short intervals. This happens by switchback and the server never initiates
more than one switchback at a time. Together, these design characteristics should
minimize the chance of the SAAM region failing to converge for a given network
condition, which would be greater if the routers were allowed to balance in either

direction. At longer intervals, the router will attempt to shift back to primary, but only
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one bucket of traffic at a time. If such a shift causes the congestion to reoccur, the router

immediately resumes the previous traffic split.

When SAAM’s server takes control during global congestion, stability is not an
issue. There is congestion everywhere and SAAM’s main concern is to ensure fairness
among contending flows. Still, convergence is attempted in this case by the server
waiting at least one local resolution timeout between sets of corrective actions. Table 1

shows the timing used for BE traffic controls.

Auto-configuration Cycle =1 ACC 200 ms (nominal)

Number of Traffic Buckets = NB 10

Load Balancing — Redirection = 1 ACC 200 ms

Load Balancing — Reversion 30 min.
Congestion Bypass = NB ACC'’s 2s
Path Expiration 30 min.

Failure Detection / Response =2 ACC’s 400 ms

Local Resolution Timeout = NB ACC’s 2s

Table 1. Best Effort Traffic Control Timing

a. Auto-configuration Cycle Time

The entire BE traffic management timing scheme depends upon the auto-
configuration cycle time of the SAAM region. It is this cycle time that governs the
exchange of periodic “I’m alive” type messages. Added to these messages are the link
state advertisements (LSA’s) from each router. The auto-configuration cycle time is a
tunable parameter generally set to be greater than the round trip time between the server
and most distant SAAM router. A lower setting causes auto-configuration cycles to
initiate without evaluating information from LSA’s in the previous cycle as well as
causing more control channel overhead in the network. A higher setting makes the
SAAM server less responsive to changes in network conditions. For the current SAAM

prototype, auto-configuration cycle time is 200 ms. This means that the SAAM server is
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apprised of the complete network condition every 200 ms. It also means that, at any
given time, the information the SAAM server has about its region may be up to 200 ms
old.

b. Redirection Interval

Once congestion is detected, Best Ef f or t Manager notifies affected
Best Ef f ort Tabl e agents to begin load balancing, which initially involves
redirection. During redirection, the Best Ef f ort Tabl e agent shifts one bucket of
traffic at a time from the primary to alternate path each redirection interval. The
redirection interval is equal to the auto-configuration cycle time. The reason for this is
that the server knows the status of that congestion no sooner and no later than the next
LSA, which is sent once per auto-configuration cycle. Therefore, the
Best Ef f ort Tabl e agent performs redirection at the same interval until notified by
the server that congestion has cleared.

c. Reversion Interval

Once congestion has cleared, traffic that has been redirected remains on
the alternate path. This is not desirable in the long term for two reasons. First, as
mentioned earlier, the alternate path may not have the performance characteristics that
the primary path does. Second, there is less room to maneuver in the event of future
congestion in the region. Ideally, when congestion occurs, every node pair is on its
primary path and collectively, the congestion will resolve by one or more routers
redirecting traffic to its alternate paths. However, if too many node pairs are already
routing most traffic on their alternate paths, then load balancing may be ineffective and

the server will have to perform congestion bypass.

In the case of redirection, where congestion is being combated, time is of
the essence. This is not the case with reversion, where the goal is to gradually restore the
primary path topology and gain minor performance increases. Indeed, if reversion were
to happen too quickly, traffic may be reverted back to an area where congestion has not
subsided. Therefore, the reversion interval of 30 minutes was chosen such that network
conditions may have appreciably changed. Graphs in [10] show that wide-area Internet

traffic patterns only change appreciably over time periods on the order of hours. For
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SAAM deployment to a region smaller than the greater Internet, the reversion area may
be tuned to match that region’s expected usage patterns. Smaller reversion intervals may
allow BE traffic to resume on high performance links earlier, but may also cause
unnecessary cycles of congestion if the previous congestion has not cleared. As
discussed earlier, stability becomes a concern as reversion interval time approaches
redirection interval time. The sole consequence of longer redirection intervals is
unnecessary lingering on lower performance alternate paths while the primary path is
cleared. If congestion results on the alternate during this period, however, the server will
initiate a switchback to place all traffic back on the primary path.

d. Congestion Bypass Time

On detection of congestion, Best Ef f or t Manager will immediately
notify Best Ef f ort Tabl e agents on affected routers so that adaptive distributed load
balancing will begin. Best Ef f ort Manager will allow load balancing to run its
course in the hope that alternate paths can relieve the primary paths enough to eliminate
congestion. However, if the deployed primary and alternate paths are both congested,
then Best Ef f ort Manager will have to perform congestion bypass. The server
knows this is necessary after a time equal to the number of buckets multiplied by auto-
configuration cycle time. By this time, all traffic would have been redirected to the
alternate path for that node pair. So, for the current prototype, the
Best Ef f or t Manager would wait two seconds (10 x 200ms) and then perform
congestion bypass if the node pair is still congested.

e Path Expiration Interval

When a region of the network becomes congested, all paths traversing that
region are affected. Best Ef f ort Manager will begin to unload this part of the
network and move traffic to unused periphery. It accomplishes this through a system of
path expiration. Once congestion bypass is performed on a node pair, that pair’s old
primary and alternate paths are marked as expired and will not be reused for BE traffic
until the path expiration interval elapses, which is 30 minutes. In the near term, this
prevents subsequent congestion bypass attempts from placing an alternate path in the

congested region. In the short term, it allows network usage of that region to subside
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prior to adding more BE traffic. Finally, these expired paths become available for
selective early reuse in the fairness procedures of Best Ef f or t Manager .

f Failure Detection / Response Time

As explained in [15], the SAAM server will detect a failure in two auto-
configuration cycles, which is 400 ms for this prototype. The response time is the time it
takes for the Best Ef f or t Manager to inform affected Best Ef f ort Tabl e agents
of the failure, which happens immediately after detection. In the interim, packets
traveling on the affected path will be lost. Once that Best Ef f ort Tabl e receives
notification of the failure, all traffic will be transferred to the unaffected paths.

g Local Resolution Timeout

During global congestion, Best Ef f ort Manager performs global
congestion resolution and proactive monitoring. This involves any number of positive
actions as detailed above in the rob-from-the-rich and give-to-the-poor fairness scenarios.
The local resolution timeout is equal to the congestion bypass time of two seconds for the
same reasons. It allows local resolution to proceed before taking any global action. In
this case, the local resolution in question is the new bandwidth that has been taken from
the rich and/or given to the poor. The timeout is also used as a delay between initiation
of proactive monitoring and any server action to combat congestion. This is necessary
since it may be that local resolution initiated just prior to the global congestion condition
will be enough to resolve the congestion. This timeout also adds to the stability of the
global congestion resolution scheme by preventing hasty action. The network is allowed
to settle after each global congestion resolution action is taken; only then are the rich and
poor classes recalculated for consideration of further action. The statistics for calculating
rich vs. poor are based on inputs that are exponentially smoothed, not instantaneous
measures.

6. Messages
A number of new messages are necessary to support the coordination of building

the BE topology and communication between Best EffortManager and

Best Ef f ort Tabl e agents.
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a. Edge Notification

1 2 16
Message Type Message Length Edge Router ID or Destination Interface Address (IPv6)
70 16 XXXXXXXXXXXXXXXX

Table 2.  Edge Notification Message Format

The BE topology is built through a process of edge router discovery.
When the SAAM region first stands up and the overall topology is built through auto-
configuration messages, all routers are assumed to be core routers that handle only
labeled QoS traffic. EdgeNoti fi cati on messages are used by routers to alert the
server of either a new router or a new BE destination address. In the first case, a core
router will send an edge notification on receipt of its first BE traffic. This is a request to
be recognized as an edge router. If it is already an edge router, but it receives a BE
packet with an unresolvable destination address, it will send an EdgeNot i fi ci ati on,
this time with the field containing the unknown IP address; this constitutes a request for a
new table entry. Table 2 shows the message format for EdgeNoti fi cati on. The
size, name, and value of each message field are presented respectively in the three rows.

b. Best Effort Table Entry

1 2 16 4 4 4
Message Message Destination Address (IPv6) Path ID Serial Number Split
Type Length
69 28 XXX XXXXXXXXXXXXX X X X

Table 3.  Best Effort Table Entry Message Format

The Best Ef f ort Manager exercises overall control of all BE traffic
through deployment of table entries for the Best Ef f ort Tabl e agents. These table
entries are sent in the message format shown in Table 3. The destination address field
carries those addresses through which the Best Ef f or t Manager has become aware by
edge notification messages. Path ID is determined by the server and corresponds to the
path that traffic will map to in that router’s FI owRout i ngTabl e. The serial number
field is reserved for future use. The split field is not currently used by the server. Split is
set on receipt and further adjusted autonomously by deployed Best Ef f ort Tabl e
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agents. Future designs may allow the Best Ef f or t Manager to send table entries with

an initial split setting.

c. CongestionAdvisory
1 2 4 1
Message Type Message Length Path ID Color Code
71 5 X Red=1/ / Green=3

Table 4.  Congestion Advisory Message Format

Congest i onAdvi sory messages are sent from
Best Ef f ort Manager to Best Ef f ort Tabl e agents. The message contains two
pieces of data. The first is the path ID. Congesti onAdvi sory messages are always
sent in reference to a particular path, though in some cases, the Best Ef f ort Tabl e
agent will act based on the destination address the message refers to. The second piece of

data is the message’s color code, which describes the nature of the advisory.

* Congesti onAdvi sory-RED means that the path in question has
failed. The Best Ef f ort Tabl e agent is to reroute all traffic to the

remaining path and await redundancy restoration.

* Congesti onAdvi sor y-YELLOW means that the path is congested.

The Best Ef f ort Tabl e agent is to begin load balancing immediately.

* Congesti onAdvi sor y-GREEN means that congestion has cleared on
all paths toward a destination. The Best Ef f ort Tabl e agent is to

terminate load balancing and maintain the current split ratio.
E. STATE ANALYSIS
The BE management system here can be further explained through a state
transition analysis. Several states have been discussed above that are being tracked in the
BE management solution and used to make decisions. First, the edge routers are tracking
destinations, which are viewed as either congested or congestion-free with a current
traffic split. Servers are tracking paths, labeling them red, yellow, or green based on their

congestion condition. Servers are also tracking edge router pairs in noting their paths
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available, congestion condition, and time in local resolution procedures.

Finally, the

entire SAAM region is viewed as either being globally congested or locally resolvable.

1. Single Node Pair Management

EDGE ROUTER
DISCOVERY /
AGENT
DEPLOYMEN

E1->S: EDGE_NOTIFICATION X 2
S->El: BEST_EFFORT_TABLE AGENT
S->E1: BEST_EFFORT_TABLE_ENTRY X 2

S->E1: CA GREEN

S->El: CARED S->El: CA

E1->S: EDGE_NOTIFICATION X 2
S->El: BEST_EFFORT_TABLE_ENTRY X 2

REDUNDANCY
RESTORATION y

4

S->El: CA GREEN

GLOBAL

CONGESTION BYPASS

———=NO MORE ROUTES AVAILABLE

AFTER 10 AC’S

CONGESTION
RESOLUTION

Figure 10. Best Effort Management State Diagram

Figure 10 show the possible states that exist in the management between

Best Ef f or t Manager and a single pair of edge routers from a server’s perspective.

El and E2 are a pair of edge routers with P1-P4 being possible paths between them. As

discussed before and shown in the figure, the existing states and their transitions depend

on path congestion condition, path availability, and time. Ideally, load balancing,

congestion bypass, redundancy restoration, and/or switchback will always be successful

in restoring a state of congestion free flow between the node pair through multiple paths.

However, as shown in the figure, there are two ways to reach the undesirable end state

where global congestion is declared.
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2. Destination Management

REVERSION

S->E1: CA GREEN
S->E1: BEST_EFFORT_TABLE X 2

. B

Figure 11. Destination Management State Diagram

S->E1: CA RED

SWITCH TRAFFIC TO
SURVIVING PATH

On the router end, BE traffic is managed on a per-destination basis. As shown in
Figure 11, destinations are colored either red, yellow, or green based on messages from
the server. During conditions green and yellow, the Best Ef f or t Tabl e is constantly
shifting traffic. During condition red, all table entries are modified so traffic is carried by
a surviving path and then the previous condition is resumed. Therefore, unless the server
sends new table entries in this case, reversion and redirection accomplish nothing other

than modifying the Split field in otherwise identical table entries.
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3. Path Management

SWITCHBACK
S->El: BEST_EFFORT_TABLE X 2

S->El: CA GREEN

LSA
S->E1: CA GREEN

S->El: CA

CONGESTION
BYPASS
S->El: BEST_EFFORT_TABLE X 2

SWITCHBACK

S->E1: BEST_EFFORT TABLE X 2

Figure 12. Path Management State Diagram

Figure 12 shows the BE path management state diagram for the general case of no
path failures and two routes available for congestion bypass. P1-P4 are paths between a
pair of edge routers. Paths are colored green, yellow, or red to indicate whether they are
congestion-free, congested, or expired, respectively. LSA’s drive the state transitions
causing the server to take actions. Fundamentally, whenever congestion occurs on the
primary path P1, congestion bypass will be performed unless that congestion clears
within the local resolution timeout time. Switchback is performed in two cases:
congestion starts on alternate path P2 while P1 is congestion-free or congestion clears on
primary path P1 while P2 is congested.
F. DESIGN TRADEOFFS

The BE traffic management solution described here is one of an infinite number
that could have been chosen for SAAM. Throughout the course of development and

design, many tradeoffs have been made which require explanation.
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1. Maintaining BE Link Provision

Recently, SAAM added a new capability called inter-service borrowing, a feature
detailed in [2]. Inter-service borrowing allows IntServ and DiffServ, SAAM’s QoS
traffic, to borrow from each other if necessary to meet QoS demand. Such an idea could
have been extended to BE traffic. Here, it was decided that rather than focusing on
adding complexity to the inter-service borrowing method, the focus would be on how to
maximize use of the existing provision. This solution’s method of moving traffic to
underutilized periphery during periods of high demand increases the potential amount of
traffic that SAAM can handle within its 15% allotment for BE. Philosophically, QoS
management is the primary function of SAAM and temporary borrowing of QoS
bandwidth for BE is contrary to that.

2. Degree of Management Centralization

SAAM’s architecture consists of lightweight routers and heavyweight servers
[12]. Therefore, a mandate already exists for general division of labor. Still within these
bounds, decisions must be made about where to place each function of a management
scheme. Keeping the routers lightweight becomes the main constraint. The design
proposed in this thesis, therefore, attempted to place the majority of added burden on the
server end. Indeed, the software solution, while written in Java, aimed to be easily
translatable to a lower level language or even hardware. For the functionality required in
the edge router proposed in this thesis, the router needs just two extra data structures (best
effort table and destination status table) and some simple behavior that is driven by time
stamp checking (redirection and reversion).

3. Management Focus

The solution designed in this thesis does not involve the server as much as it
potentially could. In the case of distributed adaptive load balancing, the server is
unaware of the current traffic splits in node pairs throughout the network though this is
information that could be reported. It only knows which pairs are currently load
balancing and which pairs are not. This is an issue of management focus. The reasons
that this solution chose the standoffish approach are threefold. First, if the server is going
to manage all load balancing down to the bucket for each node pair, significantly more

communication would be required. Second, the job of the server becomes much more
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intensive in that it would now have to make a computation-based decision every auto-
configuration cycle for each node pair in load balancing. Finally, the solution is no
longer distributed and adaptive for the case of localized congestion. Instead, it becomes a
centralized intractable problem requiring the same heuristic that is applied with the
distributed approach (shift traffic to a congestion-free path). Granted, there is room to
include a minimum interference algorithm at this point, but being able to compute a near
optimal solution in the time of one auto-configuration cycle is doubtful. Overall, the
decision made to allow the load balancing to proceed autonomously at routers is because
the effort required at the server otherwise is considered not to be worth it for marginal (if
any) time reduction in resolving local congestion.

4. Granularity of Load Balancing

One arbitrary number that hasn’t been fully discussed yet is the number of
buckets used for load balancing. No operational tests were performed on any real-life
network, but ten buckets was generally viewed as being at least within an order of
magnitude of what a best number might be for an average network. If there are very few
buckets, load balancing may be too coarse to be effective as there is a greater chance of a
single bucket’s bandwidth exceeding either available path. If there are very many
buckets, then the response time to resolve congestion becomes less acceptable.

S. Granularity of Fairness Enforcement

One of the goals for this solution was to provide fairness, which is a subjective
term. Therefore, for implementation, fairness had to be defined and put into logical terms
for software development. Ultimately, it was decided that during global congestion,
traffic flows whose loss rate lies within one standard deviation of the mean were not
being treated unfairly. The double negative of “not being treated unfairly” is used here to
allow fairness to be further defined. Therefore, SAAM takes no special action for those
flows. For those flows outside a standard deviation, however, measures are taken to
either reward or punish flows. This broad fairness range was chosen not on the basis of
hard science or field studies, but rather the realization that SAAM could be deployed on
vastly different sizes of networks. Statistically, populations of different sizes can be
normalized through parametric analysis and this serves as a starting point for a common

solution. Perhaps for specialized solutions in the future, fairness will be defined in more
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tunable, concrete terms such as “loss rate less than X,” but for now a scalable solution is

used.

Still, one standard deviation can be a very large range for data that exhibits
sizeable scatter. Indeed, in test runs, it was found that mean plus or minus standard
deviation sometimes defined a range with head or tail outside of loss rate bounds 0 and
100 percent. This would preclude either a rich or poor class of flows, seemingly
eliminating some of the control that could have been exerted with a narrower range. The
guiding philosophy here is avoiding what is viewed as unnecessary degree of control.
That is, any sustained loss rate above 0% is generally regarded as unacceptable. There
aren’t enough degrees of unacceptability to warrant finer control measures than the broad

ones used here.
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IV. SAAM IMPLEMENTATION DETAILS

In order to add BE traffic management capabilities to SAAM, some modifications
and additions have been made to the existing SAAM code. First of all, changes have
been made to the existing code for design, testing, or interface issues. Then, new
capabilities are added, carefully maintaining the existing code’s modularity,
maintainability, and overall hierarchical structure.

A. CHANGES TO EXISTING SAAM CODE

Many changes have been made to the existing SAAM code for a number of
reasons. First, the new BE solution reflects a fundamental design change where BE
traffic in its current form is integrated seamlessly and no longer requires a flow request.
Second, changes have been made to allow simulation testing of the new solution.
Finally, changes have been made to allow the new solution to properly interface with the
existing software components.

1. Flow Generator

a. Elimination of BE Flow Requests

The previous version of FI owGener at or was based on the flow request
model where the agent would send a flow request, wait for the flow response, and then
initiate the BE flow. This has been changed such that no flow request is sent and no flow
response is needed for BE flows. For a BE flow, the agent will simply initiate the flow
on its own after a short delay.

b. Random Source Addressing for BE Packets

The previous version of Fl owGener at or did not place source addresses
in packets, relying instead on the Network layer components to perform this task. Now,
capabilities have been added so that each packet receives a random source address to
simulate that it came to this router from somewhere else. This feature is necessary in

order to test the traffic splitting and load balancing features of the overall solution.
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2. Server Agent
Ser ver Agent now recognizes and handles EdgeNot i fi cati on messages.
This is necessary in order to accomplish the discovery of edge routers and BE traffic
destinations.
3. Control Executive
a. Router Classification Data Members and Get Methods
New data members have been added into Cont r ol Execut i ve in order
to properly classify the router in the overall BE management scheme. These members

arc:

i sEdgeRout er

i sCor eRout er

i sProt ectedCore

i sBor der Rout er

All are private Booleans which indicate whether this router is an edge router, core router,
protected core router, or border router, respectively. New public get methods have been

added which will obtain the value of these members. They are:
 isEdgeRouter()
 isCoreRouter()
* isProtectedCore()

 isBorderRouter()
b. Router Status Display
The method di spl ayRout er St at us() has been changed to reflect
whether this router is an edge, core, or border router.
c. BE Management
Two methods have been added for BE management capabilities. These

are:
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 accept EdgeTraffic()
 sendEdgeNotification()

The method accept EdgeTr af fi c() allows the resident Best Ef f ort Tabl e agent
to control when and if the router is BE-capable based on communication with the server.
The method sendEdgeNotification() is the means by which
Rout i ngAl gori t hmcan notify the server in event of first BE packet or BE packet
with unresolvable destination.

4. Demonstration Initiation Information

The class Denol ni t | nf o has been changed to add Best Ef f or t Tabl e to the
list of core agents.

5. Flow Request

FI owRequest has been modified to reflect that best effort is no longer one of
the possible types of flow requests.

6. Flow Routing Table Entry

Flow routing table entries have a field entitled “goodness.” Previously, this field
was initialized based on whether it was for a primary or backup route for a QoS flow. A
new constant, INSTALLED FOR _BE, has been added to reflect an entry created initially
to carry BE traffic.

7. Message

New constants have been added to the superclass Message to reflect the identifiers
for the new messages in the BE management system: BEST EFFORT TABLE ENTRY,
EDGE _NOTIFICATION, CONGESTION _ADVISORY.

8. Routing Algorithm

a. BE Packet Recognition and Handling
Previously, BE traffic was only recognized as part of an assigned flow

having been approved after a previously submitted flow request. Then, packets without a
proper flow label were discarded. Now, Rout i ngAl gori t hmhas been changed to
recognize general BE traffic. Specifically, if the ToS bits reflect BE and the path ID
portion of the flow label is zero, that packet will be treated as an ingress BE packet.

Rout i ngAl gor i t hmwill hash the packet’s source address, modulo 10 the hash value,
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and then call the Best Ef f ort Tabl e to obtain the path ID to map that flow onto. In
the case where BE traffic has not been handled at this router before or if the packet
destination  is  unrecognized, Routi ngAl gorithm  will  have  the
Cont r ol Executi ve send an EdgeNot i fi cat i on message to the server.

b. Requeueing Capabilities

Previously, Rout i ngAl gori t hmwould drop all packets for which it
could not obtain routing information, including unlabeled BE traffic. Now, requeuing
capabilities have been added for certain situations. Specifically, for new BE traffic to a
core router or BE traffic toward a new destination, SAAM will not punish that traffic
flow by dropping packets while awaiting edge router promotion or route deployment.
Instead, a new r equeueBest Ef f Pkt () method will be called which will send the
packet back to an inbound queue.

9. Transport Interface

The method for making a BE flow request has been removed since this is no
longer part of the SAAM model.
10. Base Path Information Base
a. Interfaces for Best Effort Manager
BasePI B is the class within the Server package that contains most of the
server intelligence. It is also where Best Ef f ort Manager ties in to handle its
important  functions. Best Ef fort Manager’s main interaction is in
refreshPat hQoS(). After BasePIB processes the latest LSA and updates QoS
parameters for paths in its database, it calls Best Ef f ort Manager from within this
method to report on BE loss rate for each path. It will make one of two calls based on
whether or not global congestion is occurring. In the case of global congestion, it calls
Best Ef f ort Manager’s proactiveMonitor() method. Otherwise, it calls
reacti veMoni t or ().
b. New Routing Algorithms
Several new routing algorithms have been added to BasePl B’ s inner

class Rout i ngAl ori t hm These have been added as methods:

* findPat hSWP()
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« i ndPat hSWWDP()
. findPat hSW.CP()

These methods return paths obtained by the SWP, SWMDP, and SWLCP algorithms
respectively.
c. Inner Class Path

BasePl B’ s inner class Pat h is the object representation of the paths
that BasePl B manages. Best Ef f or t Manager includes new management
capabilities requiring new constants, data members, and methods for Pat h. The
constants classify the path’s current usage in the best effort scheme as a color: GRAY,

GREEN, YELLOW RED. The new data members are:
* bConnect ed
* bBestEffortLossRate
* bestEffortTrafficCondition
* bestEffortLossRate
 tinmeBEinitiated
 tinelLastAdvi sorySent

ti meCondi ti onRed

Together, these Boolean and numeric variables enable Best Ef f or t Manager to track
and evaluate each path for BE management. Actual manipulation of the variables occurs

with the following new methods:
e initiateBestEffortTraffic()
e termnateBestEffortTraffic()
* newCongesti on()
* congestiond eared()

* expireBEpat h()
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* unexpi r eBEpat h()
d. Access Modifiers

Previously, all path management and route deployment took place within
BasePI B. In accordance with the design principle of information hiding, this enabled
complete usage of private access for associated inner classes and data structures.
Best Ef f or t Manager was created as a separate, external class from BasePl B based
on the software design principle of modularity. In order to allow the necessary visibility,

the following members of BaseP| B had their access changed from private to protected:
« Path
 Pat hQoS
* Interfacelnfo
 RoutingAl gorithm

This enables Best Ef f or t Manager and all other classes within the Server package to
see these inner classes.

11.  Server

a. Auto-Configuration Cycle Sharing

Previously, Ser ver was given its auto-configuration cycle time by the
DenpoSt ati on during configuration. No further sharing of this information was
required and it was kept as a private member. Best Ef f or t Manager , however, needs
this data to synchronize several of its methods which key on the periodicity of LSA’s,
which is equal to the auto-configuration cycle period. Therefore, a new method,
get AC cycl ePeri od(), was added to Ser ver to share this information.

b. Communications

Best Ef f or t Manager requires two new server-to-router messages:
congestion advisories and best effort table entries. These are sent via the Server
through new methods sendCongesti onAdvi sory() and sendBETUpdat e(),

respectively.
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B. ADDITION OF NEW CAPABILITIES

1. Best Effort Manager

Best Ef f ort Manager is a new class created in the Saamser ver package
that handles all the BE management on the server end. Functionally,
Cont r ol Execut i ve is running on a device. If the device is acting as a server, then
the Control Executive has a Server agent installed, which has a

Best Ef f or t Manager as one of its components.

saam.server.BestEffortManager

alternatePathForThisNodePair()
calculateFairnessVariables()
computeMean()
computeStdDev()
expireBEpaths()
getThisNodePairsBEpaths()
giveToThePoor()
globalCongestionIsOccurring()
handleBEpathFailure()
initiateGlobalCongestionResolution()
lossRateFromThisNodePair()
primaryPathForThisNodePair()
proactiveMonitor()
processEdgeNotification()
reactiveMonitor()
reclaimExpired BEpaths()
restoreRedundancy()
robFromTheRich()

switchback()
terminateGlobalCongestionResolution()
twoBEroutesActive()
unexpireBEpaths()
updateBEtopology()

Figure 13. BestEffortManager Class Structure
2. Best Effort Table

Best Ef f ort Tabl e is a new class within the Saamagent .r out er package.
Best Ef f ort Tabl e extends Hashtabl e from the javautil library and

implements the Tabl eResi dent Agent and MessagePr ocessor interfaces.
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saam.agent.router.BestEffortTable saam.event.MessageProcessor

add() processMessage()
getBestEffortTableEntry()
getMessageTypes()
getTable()
hasEntry()
install() saam.agent. TableResidentAgent
processMessage()
query() getTable()
receiveEvent() install()
receiveFlowResponse() uery()
redirect() 1 'y
receiveEvent()
revert() .
, receiveFlowResponse()
toString()
transferState()
transferState() uninstall()
uninstall()
Figure 14. BestEffortTable Class Structure

Best Ef f ort Tabl e agent has an inner class Traffi cDestination to
manage BE traffic on a per-destination basis rather than per-path.
3. Messages
a. Best Effort Table Entry
Best Ef f ort Tabl eEnt ry is a new class within the Message package

that extends Message.
b. Edge Notification
EdgeNot i fi cati on is a new class within the Message package that

extends Message.

c. CongestionAdvisory

Congesti onAdvi sory is a new class within the Message package that

extends Message.
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V. TESTS AND RESULTS

The BE traffic management solution proposed in this thesis is complex. The
solution promises many capabilities in managing BE traffic in a SAAM region. To
conduct initial validation and verification of these capabilities, a series of tests have been
performed. All tests were performed using the software simulation of SAAM’s
DenoSt at i on [XML SAX Parser] version 1.0 with custom test topologies (written as
XML files) and the flow generator and sink agents developed in [11]. In order to not
overload the processing capabilities of the host computer and to facilitate data capture,
simulation-to-real time scales of 200-500 were used in all tests (i.e. 200-500 seconds was

required to simulate one second of real time).

The overall focus of testing was more qualitative than quantitative. Primarily, the
tests are used to show that the solution built from scratch performs as designed without
concern for optimization. More exhaustive data analysis testing to fine-tune internal
design parameters on operational networks is available as possible future work.

A. EDGE ROUTER DISCOVERY AND PACKET REQUEUEING

The most fundamental test of the overall solution is that it can stand up and begin
operating. The solution was developed with the idea that BE routers and traffic
destinations will be discovered at run-time. Initially, a SAAM region will be composed
entirely of core routers. Once BE traffic begins to flow, the affected core routers should
be promoted to edge routers with their Best Ef f or t Tabl e agents receiving routing
entries for the BE traffic. Further, the BE packets that initiate the flow should not be
dropped during the discovery process, but rather, requeued until the router is able to

handle them.

63



1. Test

Figure 15. Discovery / Requeueing Test Topology

The test topology shown in Figure 15 was developed and loaded into the
simulator. There is a single source of BE traffic entering the region at Router A, destined
for Router C. Therefore, Routers A and C should be promoted to edge routers. Router
A’s Best Ef f ort Tabl eAgent should receive two table entries reflecting the two
routes to Router C.

2. Results

The test was successful in all areas. First, the discovery of routers and interfaces

was successful.

E‘;j *Saryer & [Demo-EmulationPort: 9002] [SaamPort: 9001 ] [ Currently displaying: Best ENOrbManages !ﬂm
File Protocol Stack Routing Tables Active Channels OpenPorts Application Agents  Server Admin

Figure 16. Edge Discovery
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Second, routes were successfully deployed for BE traffic to Router A. Matching
flow routes were also deployed to Router A’s flow routing table and traffic was

successfully carried from Router A to C.

E;j Router & [Demo-EmulationPort: 9004] [SaamPort: 9003] [ Currently displaying: Best Effortrabls - |EI |i|
File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

-

Dest|PvE Address Map to Path Traffic Split
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2 g2 g0
949.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2 92 20

Figure 17. BE Route Deployment

File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

Fath 1D Interface Mumher Mext Hop IPwE Address Goodness =
2 0 99.95.99.991.0.0.0.0.0.0.0.0.0.0.1 |2
82 2 99.95.899.99.2.0.0.0.0.0.0.0.0.0.0.22
92 1 99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.2/2
Figure 18. Flow Routing Entries to Support BE

Finally, to verify the requeuing mechanism was working, the same test was run
with a controlled number (100) of packets. Due to successful requeueing, every packet
made it to Router C despite being initially delayed at ingress Router A during edge
promotion and route deployment.

Egj Router & [Demo-EmulationPort: 9004] [SaamPort: 9003] [ Currently displaying: PSROUTErA=SE|
File Protocol Stack Routing Tables Active Channels Open Ports  Application Agents

Figure 19. 100 Packet Generation
E;j Router C [Demo-EmulationPort: 9008] [SaamPort: 9007] [ Currently displaging: RouterB=Flowsin
File Protocol Stack Routing Tables Active Channels Open Ports  Application Agents

Figure 20. Receipt of 100" Packet
B. LOAD BALANCING

Simply routing BE traffic is fundamental. In order to deliver on its promise of
providing a better best effort, the solution must successfully perform its built-in load

balancing capabilities.
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1. Test

Figure 21. Load Balancing Test Topology

The topology shown in Figure 21 was loaded into the simulator. This topology is
identical to that of Figure 15, which was used during the discovery test, with one
exception. The primary (widest) route from Router A to Router C will be insufficient to
carry all of the BE traffic between them. Therefore, the Server should discover this
through an LSA message and notify Router A’s Best Ef f ort Tabl e agent to begin
load balancing. Load balancing should consist of shifting traffic from the primary to
alternate route until congestion clears followed by a gradual reversion of traffic to the

primary path.

66



EgﬂRouter A [Demo-EmulationP s |El|i|

Fill Protocol ! Routing T Active Che Open P Application

Figure 22. Test Agent for Load Balancing

Specifically, the agent shown in Figure 22 was loaded, which requests 625 kbps
of bandwidth, using a pseudo-random self-similar packet distribution. Links AB and AD
(see Fig.21) were edited to each have a capacity of 622 kbps. Not only will this force
congestion when all traffic is on a single link, it will test to see whether load balancing
will find the solution that exists (traffic split so that neither link is congested).

2. Results

The simulation proceeded as expected and load balancing was successful in

finding a lossless routing solution involving both paths.
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Figure 23. Primary Path Loss Rate vs. Time for Load Balancing Test

Once the 625 kbps flow generating agent-initiated traffic, loss rates shown in
Figure 23 were observed. As expected, there was no loss rate initially as the outbound
queues filled up and absorbed excess packets. At some time between 400ms and 600ms,
the primary path’s interface’s outbound queue began to overflow resulting in a reported
loss rate on the 600ms LSA. This caused the Best Ef f ort Manager to send a
Congesti onAdvi sor y-YELLOW message to initiate load balancing by Router A’s
Best Ef f ort Tabl e agent. Router A instantly shifted to a 90/10 split.

Next, the reported loss rate continues to increase for one more cycle and then
starts to drop rapidly. Router A continues to shift traffic during the time of continued
reported loss. Finally, at 1600ms, loss rate has decayed to =zero. A
Congest i onAdvi sor y-GREEN message was sent to Router A causing termination of
load balancing and maintenance of current split.

EﬁRouter A [Demo-EmulationPort: 9004] [SaamPort: 9002 ] [ Curre - |EI |i|
File Protocol Stack Routing Tables Active Channels Open Ports  Application Agents

Dest IPv6 Address | Map to Path Traffic Split i
95.99.99.89.3.0.0.0.0.0.0.0.0.0.0.2 82 a0 m
959.99.99.89.3.0.0.0.0.0.0.0.0.0.0.2 92 a0

Figure 24. Load Balancing Test Final Split
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At that time, Router A had reached a split of 50/50 between the primary and
secondary paths. Due to the fact that reported loss rate is exponentially smoothed (with o
= 0.7 over 100ms sampling intervals), Router A may have over-corrected as reported loss
rate decayed below the threshold. If this was the case, then the reversion process should

gradually place traffic back onto the primary path.

Unfortunately, a reversion interval of 30 minutes and a simulation time scale of
200 make for a very long (100 hours) test. Therefore, to test the reversion feature, the
code was temporarily modified to make the reversion interval equal to the redirection
interval of 200ms in order to verify reversion operates as designed. The same scenario
was run with this modification in place. As expected, reversion did begin to take place
once the initial congestion had cleared. Not surprisingly, the split reverted all the way
back to its initial setting of 100/0, which, of course, caused the congestion to reappear
since load had not changed. In the solution’s real life implementation, this amount of
reversion would have taken 2.5 hours (five buckets of traffic times 30 minutes), hopefully
enough time for the network’s usage to lessen. Otherwise, load balancing would be
expected to resume and find a loss-free balance.
C. CONGESTION BYPASS

If congestion were to develop in a region affecting both a Best Ef f ort Tabl e
agent’s routes to a destination, then load balancing would be useless. This is where the

overall solution’s congestion bypass mechanism comes to the rescue.
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1. Test

Figure 25. Congestion Bypass Test Topology

The test topology shown in Figure 25 was developed and loaded into the
simulator. A single BE flow originates on Router A destined for Router C. Congestion
will develop on the initial two routes. This should cause load balancing to take place for
2 seconds, shifting all traffic to the alternate path. After this time (the local resolution
timeout is 2 seconds), the Best Ef f ort Manager should perform congestion bypass
and deploy the other two routes to Router C. Router A’s Best Ef f ort Tabl e agent
should install the new routes and direct 100% of the traffic to the new primary route.

2. Results

The test was completed successfully.

["-:; Router & [Demostation Port: 9004] [Emulation Port: 9003] [ Currently displaying: Eest Effort Pat = |EI il
=lox|
DestIPvE Address Map to Path Traffic Split

§9.98.99.99.5.0.0.0.0.0.0.0.0.0.0.2 114 100 Hl

99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2 146 0 _ |zl x|

Fi Protoc: Routing Active ¢ Open Applicati Serve

File Protocol Stack Routing Tables Active Channels Open Ports  Application Agents

Dest IPv6 Address hap to Path Traffic Split
— - 99.93.59.95.5.0.0.0.0.0.000.0.0.2 114 0

B8 server A [Demos OIS [=] 3| N Frp R T N R 196 100

rotoc: Routing Active ¢ Open Applicati Serve|

[emostation Port: 9004] [Emulation Port: 9003] [ Currently displaving: Best Effort Pat
ack Routing Tables Active Channels Open Ports  Application Agents

E‘-ﬂ Router A [Demostation Port: 9004] [Emulation Port: 9003] [ Currently displaying: Best EffortPat!
File Protocol Stack Routing Tables Active Channels Open Ports  Application Agents

DestIPvE Address Map to Path Traffic Split
99.55.85.95.5.0.00.0.0.0.0.0.0.0.2 100 1}
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2 146 100
99.99.99.99.5.0.00.0.0.0.0.0.0.0.2 114 1}
99.99.95.99.5.0.00.0.0.0.0.0.0.0.2 196 1}

Figure 26. Congestion Bypass Test Results
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As seen in Figure 26, everything went as expected. Initially, paths 114 and 196
were deployed as the primary and alternate routes from Router A to Router C. As soon
as congestion was noted on path 114, a Congesti onAdvi sor y-YELLOW message
was sent to Router A’s Best Ef f or t Tabl e agent. Load balancing goes into effect for
10 auto-configuration cycles, by which time all traffic has been directed to alternate path
196. Now that the local resolution timeout has expired, the Best Ef f or t Manager
initiates congestion bypass procedures and deploys routes 100 and 146, which avoid the
congestion.

D. FAIRNESS

Load balancing and congestion bypass work well when congestion is in isolated
pockets of the network and can be avoided through active management by the server.
When congestion is everywhere (global), all methods of congestion avoidance become
useless. Here, the BE management solution turns its attention from congestion avoidance
to fairness enforcement.

1. Test

The fairness enforcement procedures cover an infinite number of situations
ranging anywhere from two competing hosts to millions. It is impossible to develop
every single scenario that could happen or even a representative scenario. Rather, the
procedure is tested to see if it properly carries out its two main corrective actions: robbing

from the rich and giving to the poor.

Figure 27. Fairness Test Topology
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The topology shown in Figure 27 was developed and loaded into the simulator.
The flow generators for Routers A and B provide more load than the network can handle,
forcing global congestion. When and if Best Ef f or t Manager recognizes the global
congestion, test signals will be inserted marking the A-E flow as rich and the B-E flow as
poor. Best Ef f ort Manager should take appropriate measures at that point to ensure
fairness.

2. Results

The test was successful with the Best Ef f or t Manager taking correct actions.
[E3 *server A [Demost _|of x|

Fil Protoco Routing Active C| Open | Applicatio Server

-

WWARMNING! —
WWARMNING!

WWARMNING!

GLOBAL CONGESTION

Initiating global congestion resolution procedures.
Calculating fairness variables...

Mean [0ss rate is 13.89%.

Loss rate SDis 31.066436873256%.

Atternpting to rob from the rich and give to the poor,
Calculating fairness variahles...

Mean loss rate is 3.19%.

Loss rate 5D is 7.144235438449659%.
Deactivated path 82 far node pair (1,47,

Robhbed from the rich.

Resettraffic splitto 100/0 for node pair (5,43

Gave to the poar.

I I~

Figure 28. Fairness Test Results

As programmed, Best Ef f or t Manager waited to see if the situation could be
corrected by local resolution. After that time, Best Ef f ort Manager initiated
proactive monitoring and global congestion resolution procedures to include an initial
round of loss rate statistics. It then waited another local resolution timeout to ensure any
local resolution measures enacted just before global congestion started were allowed to
run their course. Indeed, by that time the loss rate had improved (see Fig. 28), but
proactive measures were still in order. Best Ef f or t Manager successfully completed
a rob-from-the-rich procedure for A-E and a give-to-the-poor procedure for B-E.

E. PERIPHERY UTILIZATION

One of the hopes for the new BE management solution is for a particular

emergent behavior: network periphery utilization. The new system for BE traffic

management should cause the network periphery to be utilized when the network center
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is overloaded. Further, this behavior should emerge, as it were, from the simple
underlying algorithm of load balancing, which is not at all concerned with centers or
peripheries.

1. Test

Figure 29. Periphery Utilization Test
The topology shown in Figure 29 was developed and loaded into the simulator.
All links have equal bandwidth causing all paths comprised of these links to have equal
bandwidth as well. Therefore, the primary paths assigned for BE traffic from Routers A
and C to Router E should both share Router G and the link GE. The combined offered
load was purposely designed to overwhelm link GE and force load balancing to take
effect. Once the congestion clears, load balancing should terminate. The final state of

the network should be one in which the peripheral links share some of the load.
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2. Results
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Figure 30. Periphery Utilization Test Results

The test was completed successfully with results as expected. Initially, Routers A
and C were given primary paths 83 and 76, respectively. As these were chosen by the
SWP algorithm, they shared Router G and link GE. Once congestion developed,
Best Ef f ort Manager sent Congesti onAdvi sory messages to effect load
balancing. This caused Routers A and C to shift traffic to alternate paths 212 and 134,
respectively. These paths were chosen by the SWMDP algorithm and contained links
and nodes on the periphery of the network. Traffic cleared when 70% of the traffic had
been shifted to peripheral paths.
F. COMPARATIVE BENEFIT

The previous tests have provided a mostly qualitative perspective in examining an
overall network. The last aspect that needs to be examined is a quantitative one that will

examine a single flow for comparative benefit with the new BE solution.
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1. Test

The load-balancing test from before will be repeated to examine the difference

between loss rates when load balancing is enabled or disabled.

Offered Load 750 kbps
Primary Path Bandwidth 622 kbps
Alternate Path Bandwidth 622 kbps

Table 5.  Load Balancing Test Parameters
The simulation will be run five times each for the cases with and without load
balancing. In the load balancing case, loss rate should eventually return to zero as traffic
is split between the primary and alternate paths. In the case without load balancing, a
loss rate should persist indefinitely.
2. Results

The results show an appreciable benefit from load balancing in this case.
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Figure 31. Loss Rate Comparison With and Without Load Balancing

Figure 31 shows the average result for each case over five test runs. As expected,

the performance is similar initially. Both flows experience no loss while the packet
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queue is filling up. The queue overflows near 800ms causing packet loss. In the case
without load balancing, the lossy condition persists. In the load balancing case, however,

packet loss ceases after about 1.6 seconds.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
1. Requirements Revisited
The BE traffic management solution developed in this thesis addresses all

previously stated requirements and meets those requirements fully or in part.

a. Security

While the solution developed herein offers no fully implemented security
features for BE traffic, the underlying code allows future developers to set a software
switch that will identify a router as a protected core router.

b. Light-Weight Routers

SAAM’s routers remain lightweight as the servers of SAAM take on
almost all of the memory and computational requirements associated with the developed
solution.

c Interoperability

Due to the handling added for unlabeled IPv6 packets, SAAM’s
interoperability has been enhanced with regard to BE traffic.

d. Fault Tolerance

The solution developed ensures complete fault tolerance for BE traffic
with regard to connectivity. There would have to be no surviving path between a source
and destination for traffic between the two to be permanently disrupted.

e Fairness

The solution developed addresses fairness in times of resource contention.
This fairness is only between node pairs, not flows. Further, it is of rather coarse
granularity based on exponentially smoothed reported loss rates.

f Adaptive Response Mechanisms

The solution developed has successfully incorporated adaptive response

mechanisms, allowing automatic rerouting based on changing network conditions.
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g. Stability

Stability has been addressed through careful selection of time constants.
However, no testing has been performed in the area of convergence-time minimization
through parameter tuning.

h. Scalability

Scalability will depend on memory and CPU speed of deployed routers.
The solution developed herein has addressed scalability through its economical choice of
when and where to deploy the table entries and activate the agents needed to handle BE
traffic.

i. Intelligent Provisioning

Intelligent provisioning has been achieved by the solution’s method of
assigning high performance routes during periods of low load and then moving traffic to
less utilized areas when congestion results in a region of high demand.

Je Packet Recovery

This solution provides for a number of packets up to the router’s inbound
queue size to be buffered while the router awaits BE characterization.

2. Overall
SAAM now has an effective, but not necessarily optimal, solution for managing

BE traffic. This solution builds on the strengths of the SAAM architecture and stays true
to its core paradigm. SAAM now has the potential to deploy as an integrated,

comprehensive network solution rather than just a module for handling QoS traffic.

The Internet may provide a “best” effort, but SAAM delivers an even better effort
through intelligent central management. BE users in a SAAM region can expect more
than just the connectivity promised elsewhere. SAAM does indeed provide a “better best
effort”.

B. RECOMMENDATIONS FOR FUTURE WORK

This thesis has successfully brought BE traffic management to SAAM. In many
ways, however, it should be viewed as “Version 1.0.” There are several unanswered
questions as well as areas for improvement. These are left open as areas to be researched

and/or improved by future thesis students and SAAM developers.
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1. A Border Gateway Agent

The routers at the borders of SAAM regions will need to know where to route BE
traffic leaving the region. One solution would be to develop a border gateway agent for
those routers. This agent should handle an exterior gateway protocol such as BGP in
order to exchange routing information with external, non-SAAM routers. This will
simplify SAAM’s interior BE routing as all BE traffic could be directed to the router(s)
with border gateway agents.

2. Security Features

SAAM’s BE policy could be used as another avenue of attack by malicious users.
For example, a denial-of-service attack could cycle the congestion handling mechanisms.
Now that the BE solution for SAAM has been developed and implemented, classic BE
security research should be undertaken.

3. Deployable Agents

Currently, the new router agents developed in this thesis are among the “core
agents,” those that are preinstalled in every router. This means that they remain latent
until that router receives BE traffic, if ever. One avenue that could be explored is the
desirability of making the BE agents deployable and only sending to a router on a need
basis.

4. Fine Tuning of Parameters

In building this solution from scratch, many of the parameters involved were
chosen more on the basis of reasonableness than anything else. For values such as the
number of traffic buckets, reversion time, and path expiration time, more extensive data
analysis could be performed with the intent of recommending a range of values for given
situations. Convergence time is an important consideration for routing protocols and
could be a possible starting point for further analysis involving the change of these
parameters versus various network conditions.

S. An Even Better Best Effort

There are several areas in the solution where the management schemes could be
made more complex and possibly more effective. On the server end, total control could
be assumed by developing an algorithm seeking to manipulate all path splits. Currently,
the server just deploys paths and turns load balancing on and off. On the router end,
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there is no limit to the number of paths that could be deployed to a destination. Perhaps
an algorithm could be developed where each node pair has three paths. Even more, each
router could be given a full set of disjoint paths to a destination. Again, the supporting
algorithms would have to be developed for these cases in regard to how to accomplish
load balancing in this more complex arrangement.

6. Implementation of Other Algorithms

While they do take network-wide congestion into account, the algorithms used in
this solution do not take full advantage of all the SAAM server has to offer. For instance,
all of the path finding algorithms described for this solution take a fundamentally greedy
approach that focuses on a single node pair. SAAM’s servers could potentially make
better decisions through a class of path finding algorithms that focus on “minimum
interference.” Minimum interference algorithms take into account where other paths
have been established and in some cases a heuristic approach attempting to minimize
interference with some future path. As it is, the only consideration this solution gives to
other deployed paths is taken through attention to congestion parameters.

7. Refinement of Fairness Approach

The fairness measures adopted by this solution are only on a per-aggregate-flow
basis. A finer solution would be to provide fairness between hosts or sessions.
Additionally, the methodology adopted of a Robin Hood do-good approach based on
coarse statistical measures could be made more sophisticated. For one, fairness could be
better defined than loss within a standard error of mean. Additionally, rather than giving
and taking entire paths to node pairs, a rate control could be instituted which would allow

for a measured sharing.
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APPENDIX A: GLOSSARY

Address Resolution Protocol (ARP)

A protocol that dynamically discovers the physical address of a system, given its IP
address.

Admission Control

The portion of QoS management concerned with whether or not to admit a flow and
approve its flow request.

Application layer

One of the seven layers in the OSI model for computer communications. It is the layer in
which applications and services run.

ARPCache

The class in the SAAM software that provides functionality roughly equivalent to an
ARP cache table on a conventional router.

Autonomous System (AS)

An internetwork that is part of the Internet and has a single routing policy.

Best Effort (BE)

The term applied to traditional Internet traffic for which no QoS guarantees are made

Delay jitter

For a given packet, the amount by which the packet’s delay varies from the mean delay
for that stream of packets.

Delay variation

-see “delay jitter”-
Differentiated Service (DiffServ)

A model for handling QoS traffic in which multiple flows with equal service
requirements are aggregated into a class of service.
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Dijkstra’s algorithm

A well-known algorithm named after Edsger Dijkstra that computes the shortest path
between two nodes in a graph.

Flow label

Given to packets in an assigned SAAM QoS flow, the label concatenates a flow
identification and a path identification for flow and path management.

Flow routing table
A table located in SAAM routers that routes packets based on flow labels.

Heavyweight

A term given to software components designed with no concern for processing power
and/or memory requirements.

Hop

Refers to the travel between adjacent nodes in packet-switched networks.

Integrated Service (IntServ)

A model for handling QoS traffic in which state is maintained on each flow due to
allowing flow-individualized QoS parameters.

Internet

When capitalized refers to the entity that is the worldwide computer internetwork. Lower
cased usage is proper only when spelled out as internetwork referring to a part less than
or separate from the worldwide portion.

Internet Draft

A document submitted as part of the Internet standards development process. It is for
comment in open forum, but unlike the similar RFC document, it has an expiration
date.

Internet Engineering Task Force (IETF)

A set of working groups made up of volunteers who develop and implement Internet
protocols.
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Jitter

-see “delay jitter”-

Lightweight

A term given to software components designed to be lean in terms of processing and
memory requirements.

Link-state flooding

The process by which neighboring link-state protocol routers share information through
occasional saturation of interior links with topology information. This saturation is
necessary to ensure every router receives all sharing information from every other
router.

Local Preference

In BGP, a purely internal path attribute that can be used to set preference for external
routes.

Local resolution timeout

For SAAM’s BE traffic management solution, it is the time equal to the maximum time it
could take for a full cycle of load balancing to occur, which is equal to the number of
buckets multiplied by the auto-configuration cycle time.

Multiexit Discriminator

In BGP, a path attribute that can be assigned by a neighboring AS that indicates
preference among multiple routes between the two AS’s.

Network layer

One of the seven layers in the OSI model for computer communications. It is the layer
through which physical connections become abstracted and dissimilar entities can be
viewed as a logical network of links and nodes.

Next Generation Internet (NGI)

A Presidential Initiative with primary goal of researching network technologies to enable
the Internet to scale in size, speed, and reach.

Next hop

A term referring to the next sequential physical link a packet must traverse in a packet-
switched network.
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Poison reverse

A technique to prevent circular traffic in RIP domains in which neighbors tell their next
hop for a route that the cost through them is infinity.

Quality of service (QoS)

A term referring to any combination of a number of performance metrics concerning data
flow through a network.

Reachability

A term used in BGP that indicates whether or not a given destination is reachable.

Redirection

In SAAM’s BE traffic management, the process by which traffic between a source and
destination is redirected to the alternate path.

Request for Comment

A document submitted as part of the Internet standards development process. It is
permanently archived and tracked to indicate the state of the technology development
for its research area.

Resource Management

The portion of QoS management concerned with tracking resources and their current
usage.

Reversion

In SAAM’s BE traffic management, the process by which traffic between a source and
destination is reverted back to the primary path.

Robin Hood

A mythical vigilante from Merry Olde England who robbed from the rich and gave to the
poor.

Route flapping

The phenomenon in which a dynamic routing solution causes a given traffic flow to
constantly oscillate between multiple routes.
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RoutingAlgorithm

The class in the SAAM software that provides functionality roughly equivalent to the
routing algorithm on a conventional router.

Server and Agent-based Active Network Management (SAAM)

A comprehensive network management solution being developed at the Naval
Postgraduate School that seeks to provide management for QoS traffic while
maintaining the underlying robustness of the TCP/IP network architecture.

Service Level Agreement (SLA)

An agreement between neighboring AS’s or ISP’s that concerns route information
sharing and traffic carrying among other things.

Split horizon

A technique to prevent circular traffic in RIP domains in which neighbors do not report
routes back to the next hop for that very route.

Switchback

In SAAM’s BE traffic management, the process by which a server directs all traffic for a
node pair to be switched back to the primary path.

Tce/ip

Refers to the dominant combination of protocols on the Internet today: Transmission
Control Protocol (TCP) and Internet Protocol (IP). Together, IP provides the
connectivity and TCP the end-to-end flow control.

Transport layer

One of the seven layers in the OSI model for computer communications. It is the layer
that provides methods of flow control, ordering of received data, and acknowledgement
of correctly received data.

Utilization

For a network link, the percent usage as measured by data throughput over throughput
capacity.
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APPENDIX B: LIST OF ACRONYMS

ARPA

Advanced Research Projects Agency
AS

Autonomous system

BE

Best effort

BGP

Border Gateway Protocol
DARPA

Defense Advanced Research Projects Agency
DiffServ

Differentiated service

DoD

Department of Defense

ECMP

Equal cost multipath

IETF

Internet Engineering Task Force
IntServ

Integrated service

P

Internet Protocol

1Pv4

Internet Protocol version 4

1Pv6

Internet Protocol version 6

IS0

International Organization for Standardization (not an acronym, but derived from Greek
isos)
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JAY o

Internet service provider

LSA

Link state advertisment

LSP

Label-switched protocol

MATE

Multi-adaptive traffic engineering
MPLS

Multiprotocol Label Switching
NASA

National Aeronautics and Space Administration
NGI

Next Generation Internet

osI1

Open Systems Interconnect
OSPF

Open Shortest Path First

QoS

Quality of service

RIP

Routing Information Protocol
SAAM

Server and Agent-based Active Network Management
SLA

Service level agreement

ICce

Transmission Control Protocol
TEWG

Traffic Engineering Working Group
ToS

Type of service
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XML
Extensible Markup Language
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APPENDIX C: BEST EFFORT MANAGER SOURCE CODE

25Feb02][ Wofford] - Sudafed renamed Congestion Advisory.
15Feb2002[ W] Repackaged
04Feb 2002 [Wofford] Created.

package org.saammet.saam server;

i mport org.saammet.saam gui . MAGVAAdm nGui ;

i nport org.saammet.saam net. *;

i mport org.saammet.saam nessage. EdgeNoti fi cati on;

i nport org.saammet. saam nessage. Congesti onAdvi sory;

i mport org.saammet.saam nessage. Fl owRout i ngTabl eEntry;
i mport org.saammet.saam agent.router. Fl owRout i ngTabl e;

inport java.util.Enuneration;
inmport java.util.Vector;
import java.net.*;

/

N

*

Best Ef f ort Manager (BEM is the intelligence within the SAAM server that nanages
best effort traffic. It continuously nonitors LSA's through one of two nopdes:
proactive or reactive. Absent global congestion, BEM communi cates with BE
router agents to handle | ocal congestion. During global congestion, BEMtakes
nmeasures to enforce fairness.

/

public cl ass BestEffortMinager

{

//when a BE path is expired, the period it will remin inactive
public final static |ong PATH_EXPI RATI ON_TI ME = 1800000;//30 mi nutes

/lreferences required for operation
private BasePl B nyBasePI B;
private Server nyServer;

private MAGVAAdm nGui gui;
private bool ean gl obal Congestion;//is it occurring?

private | ong | ocal Resol utionTineout;//allow |ocal resolution to take place
private boolean Irtlnitialized;//tracks initialization of |ocal ResolutionTi meout
private long tinelLastActionTaken;//the last time an active nmeasure was taken
private | ong tinmeLastCongestion;//the last tine congestion was noted

private |long tineLastSw tchback;//the last tine a sw tchback was perforned

//statistics used for fairness nmeasures
private doubl e meanLossRat e;
private doubl e stdLossRateDev;

//Vectors that store routerlD s and interface addresses that

/lare registered for best effort traffic BY THEI R STRI NG REPRESENTATI ON.
Vector vBestEffortRouters = new Vector();

Vect or vBest Ef f ort Dest Adds = new Vector();

//used in bePat hAdm n()

private static final byte UNEXPI RE_PATHS = O;
private static final byte GET_PATHS = 1;

private static final byte UPDATE LCSS RATE = 2;

private static final byte RECLAIM PATHS = 7;

//used in beNodePairAdmi n()

private static final byte DEPLOY_I NI TI AL_PATHS = 3;
private static final byte GET_LOSS RATES = 4;
private static final byte ROB_IF_RICH = 5;

private static final byte G VE_IF_POOR = 6;
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/**
* CONSTRUCTOR
* @aram basepib required reference
* @aram server required reference
*
/
Best Ef f ort Manager ( BasePl B basepi b, Server server)
{
myBasePl B = basepi b;
myServer = server;

/] Create Cui for PIB display during generation.
gui = new MAGVAAdM nCui ("Best Effort Manager", server);
server. get Control Exec() . addMagmaGui (gui ) ;

gui . sendText ("Initializing...");

gl obal Congesti on = fal se;
Irtinitialized = fal se;
timeLast Swi t chback = 0;

gui . sendText ("initialized.");

/**
* Processes EdgeNotification messages.
* @aram edgeNotif the nmessage
*/
protected void processEdgeNotification (EdgeNotification edgeNotif)
{
/linitialize |ocal Resol utionTineout variable
if (Mrtlnitialized)

| ocal Resol utionTi meout = 10 * nyServer. get AC cycl ePeriod();
Irtinitialized = true;
gui . sendText ("\ nLocal resolution tineout is " +
| ocal Resol utionTi neout + "ns.");

}

int count = 0;//used below to figure out how nuch information is new
gui . sendText ("\ nProcessi ng edge notification.");
| Pv6Address interfaceAddress = edgeNoti f. get Edgel nt er f aceAddress();

/] Xi e-dar pa

BasePI B. I nterfacel nfo edgel nterfacelnfo = (BasePIB. I nterfacelnfo)
nmyBasePl B. ht I nterfaces. get (i nterfaceAddress.toString());

if (edgelnterfacelnfo == null)

gui .sendText ("\n PIB is not ready; quit processing the edge notification
message. ") ;
return;

}

int nodel D = edgel nterfacel nfo. get Nodel D().intVal ue();
| Pv6Address routerl D = (I Pv6Address) myBasePl B. ht Nodel Dt oRout er | D. get (new | nt eger
(nodel D)) ;

/lis this a newly discovered edge router?
if (!(vBestEffortRouters.contains(routerlD.toString())))

gui . sendText ("Adding " + routerID.toString() + " to edge routers vector.");

vBest Ef fort Routers. add(routerID.toString());
count ++;

}

/lis this a newy discovered destinaton interface?

if (!(vBestEffortDestAdds.contains(interfaceAddress.toString())))
{
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gui . sendText ("Adding " + interfaceAddress.toString() + " to edge interfaces

vector.");
vBest Ef f or t Dest Adds. add(i nterfaceAddress.toString());
count ++;

}
if (count > 0)

{
gui . sendText ("Updating best effort topology...");
updat eBEt opol ogy();
gui . sendText (" Conpl et ed updating best effort topology.");

}

el se

{

gui . sendText ("No new i nformation; best effort topology still
accurate.");

}
}//end processEdgeNotification()

/**

* \Wen gl obal congestion is absent, reactive nonitoring takes place.
* @aram path the path being observed

* @aram |ossRate the best effort loss rate on that path

*/

protected void reactiveMonitor(BasePlB. Path path, short |ossRate)

if (lossRate > nyBasePI B.t hreshol dLossRat e)
{

unexpi reBEpaths();//see if any expired paths are due for reuse
switch (path.bestEffortTrafficCondition)

case BasePI B. Pat h. GRAY:
br eak;

//this is a case of new congestion
case BasePl B. Pat h. GREEN:
int firstNodel D = path. get SrcNodel () ;
int |astNodel D = pat h. get Dest Nodel I)() ;
if (path == alternatePat hFor Thi sNodePai r (first Nodel D,

{
BasePI B. Pat h primaryPath =
pri mar yPat hFor Thi sNodePai r (first Nodel D, | ast Nodel D);
if (primaryPath.bestEffortTrafficCondition ==

| ast Nodel D))

BasePI B. Pat h. GREEN)

{
gui . sendText ("\ nNew congesti on on an
alternate path while primary path |lossless.");
swi t chback(firstNodel D, |astNodel D);
}
el se
{
pat h. newCongesti on();
}
}
el se

{
| Pv6Address routerl D = (I Pv6Address) myBasePl B. ht Nodel Dt oRout er | D. get ( new
Integer(firstNodelD));
mySer ver . sendCongest i onAdvi sory(routerl D, path. getPathl D().intValue(),
Congesti onAdvi sory. YELLOW ;
pat h. newCongesti on();
gui . sendText ("\ nNew congestion on primary path " +
path.getPathl D().intValue() + ".");
gui . sendText (" Congesti on Advi sory YELLOWsent to
node " + firstNodelD + ".");
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br eak;

/1if local resolution has failed, deploy new paths or initiate global congestion
procedures
case BasePI B. Pat h. YELLOW
bool ean nolLocal Resol uti onPossi bl e = fal se;
if ((SystemcurrentTimeMI1is() - path.timelLastAdvisorySent) >
(1 ocal Resol utionTi neout * myBasePl B.tineScal e))

noLocal Resol uti onPossi bl e = true;
firstNodel D = path. get SrcNodel IX) ;
| Pv6Address srcRouterl D = (I Pv6Address) nyBasePl B. ht Nodel Dt oRout er | D. get ( new
Integer(firstNodelD));
| ast Nodel D = ((Integer) (path.getNodeSequence().firstEl enent())).intValue();
| Pv6Addr ess destRouterl D = (| Pv6Address) mnyBasePl B. ht Nodel Dt oRout er | D. get (new
I nt eger (I ast Nodel D)) ;
BasePl B. Pat h bePat hl = nyBasePl B. routi ngAl gorithm findPat h(srcRouterl D,
dest Router| D,
nul |,

myBasePI B. rout i ngAl gori t hm SHORTEST_W DEST_LEAST_CONGESTED_PATH) ;
if (bePathl !'= null)

{
gui . sendText ("\ nCongesti on bypass initiated
for nodes " + firstNodelD + " to " + |lastNodelD + ".");

noLocal Resol uti onPossi bl e = fal se;

I nteger bePat hl D1 = bePat hl. get Pat hl D() ;
I nteger bePathl D2 = null;
gui . sendText (" Depl oyi ng path " + bePathl Dl +

as the new primary path.");
if (!bePathl. bCreat ed)

myBasePI B. set upPat h( bePat hl, bePat hl D1. i nt Val ue(),
FI owRout i ngTabl eEntry. | NSTALLED _FOR BE) ;
bePat hl. bCreated = true;

}

expi reBEpat hs(firstNodel D, | astNodel D);
nmySer ver . sendCongest i onAdvi sory(srcRouterl| D, path.getPathlD().intValue(),
Congesti onAdvi sory. GREEN) ;
gui . sendText (" Congesti on Advi sory GREEN sent
to node " + firstNodelD + ".");
BasePl B. Pat h bePat h2 = nyBasePI B. routi ngAl gorithm fi ndPat h(srcRouterl D,
dest Router | D,
bePat h1l,

nmyBasePI B. rout i ngAl gori t hm SHORTEST_W DEST_MOST_DI SJO NT_PATH) ;
if (bePath2 != null)
{
bePat hl D2 = bePat h2. get Pat hl D() ;
gui . sendText (" Depl oyi ng path " +
bePathl D2 + " as the new alternate path.");
if (!bePath2. bCreated)

nmyBasePI B. set upPat h( bePat h2, bePat hl D2. i nt Val ue(),
FI owRout i ngTabl eEntry. | NSTALLED _FOR BE) ;
bePat h2. bCreated = true;
}

}

el se

{
Y/ lend if

bePat hl D2 = bePat hl D1;

sendTabl eEntri es(srcRouter| D, destRouterlD,
bePat hl D1. i nt Val ue(), bePat hl D2.i ntVal ue());
Y/lend if
Y/ /lend if
if ((noLocal Resol utionPossible) && (!gl obal Congestion))
{
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gui . sendText ("\ nWARNI NG \ nWARNI NG \ nWARNI NG ") ;
gui .sendText ("GL OB A L CONGESTI ON');
gui . sendText ("I nitiating gl obal congestion

resol ution procedures.");

}

br eak;

initiated obal Congesti onResol ution();

/Ino action necessary; the path's been retired
case BasePI B. Pat h. RED:
br eak;

defaul t:
br eak;
}

/I'has the previous congestion cleared?
else if (path.bestEffortTrafficCondition == BasePl B. Pat h. YELLOW

int firstNodel D = path. get SrcNodel IX) ;
int |astNodel D = pat h. get Dest Nodel ) ;
BasePI B. Pat h pri maryPath = pri maryPat hFor Thi sNodePai r (fi rst Nodel D,
| ast Nodel D) ;
BasePlI B. Path alternatePath =
al t er nat ePat hFor Thi sNodePai r (first Nodel D, | astNodel D);
if (path == prinmaryPath)

if (alternatePath. bestEffortTrafficCondition ==
BasePI B. Pat h. GREEN)

{
| Pv6Address routerl D = (| Pv6Address)
myBasePI B. ht Nodel Dt oRout er | D. get (new | nteger (firstNodelD));
mySer ver . sendCongest i onAdvi sory(routerl D,
pat h. get Pat hl () . i nt Val ue(), Congesti onAdvi sory. GREEN) ;
pat h. congesti onC eared();
gui . sendText ("\ nCongestion cleared on path " +
path.getPathl D().intValue() + ".");
gui . sendText ("No nore congestion for node pair (" +
firstNodeID + "," + lastNodelD + ").");
gui . sendText (" Congesti on Advi sory GREEN sent to node
+ firstNodelD + ".");
}

el se

{
gui . sendText (" Congestion has cleared on a primary
path " + path.getPathlD() + " while alternate path |ossy.");
pat h. congesti onC eared();
swi t chback(firstNodel D, |astNodelD);

}
}
el se
{
pat h. congesti onC eared();
}

}/ 1 end reactiveMnitor()

/**

* Proactive nonitoring takes place during global congestion.
* @aram path the path being observed

* @aram |ossRate the best effort |loss rate on that path
*/

protected void proactiveMnitor(BasePlB. Path path, short |ossRate)
pat h. bestEf fort LossRate = | ossRate;//only recorded during active nonitoring

long currentTime = SystemcurrentTimeM I 1is();
if (lossRate > nmyBasePI B.t hreshol dLossRat e)
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ti meLast Congestion = currentTi ne;

else if ((currentTime - tinmeLastCongestion) > (l|ocal Resol utionTi meout *
nmyBasePl B. ti neScal e))

{
t er m nat ed obal Congesti onResol ution();
reactiveMonitor(path, |ossRate);
gui . sendText ("\ nd obal congestion resolved!");
gui . sendText (" Ternmi nating gl obal coneston resolution procedures.");
return;
}

if ((currentTine - tineLastActionTaken) > (|ocal Resol utionTi neout *
nmyBasePl B. ti neScal e))

{

poor.");

gui . sendText ("\nAttenpting to rob fromthe rich and give to the

gui . sendText (" Cal cul ating fairness variables...");
cal cul at eFai rnessVari abl es();
bool ean robbed = robFronTheRi ch();
bool ean gave = gi veToThePoor ();
if (robbed || gave)
{

ti meLast Acti onTaken = currentTi ne;

}

el se

{
timeLast Acti onTaken = currentTime + (10 *
| ocal Resol uti onTi neout * nyBasePl B. ti neScal e);
gui . sendText ("No action taken.");

}
}
el se
{
reactiveMonitor(path, |ossRate);
}

//end proactiveMonitor()

/**

* Every time a new edge router is discovered, the BE topol ogy is updated
* and new paths are depl oyed as necessary.

*/

protected voi d updat eBEt opol ogy()

{

/1first, reset the topol ogy

gui . sendText ("Resetting old paths...");
Enuneration all paths = nyBasePl B. ht Pat hs. el enent s();
whi |l e (al |l pat hs. hasMor eEl enents())
{

BasePI B. Path thi spath = (BasePlI B. Path) (all paths. nextEl ement());
if (thispath.bBestEffortTraffic)

thispath.term nateBestEffort Traffic();

}
}

gui . sendText ("reset.");
beNodePai r Adrmi n( DEPLOY_I NI TI AL_PATHS) ;

}/ 1 end updat eBEt opol ogy()

/**

* \When one of a BET agent's path fails, the BEMrestores redundancy by
* depl oyi ng a new path.

* @aram pathlD the remaining path

*/
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private void restoreRedundancy(int pathl D)

BasePl B. Pat h deadPath = (BasePl B. Pat h) (nyBasePl B. ht Pat hs. get (new I nteger(pathiD)));
BasePI B. Path livePath = null;
int srcNodel D = ((BasePI B. Pat h) (myBasePl B. ht Pat hs. get (new
I nteger(pathlD)))).get SrcNodel IX);
int destNodel D = ((BasePI B. Path) (nyBasePI B. ht Pat hs. get (new
I nteger(pathlD)))).get Dest Nodel DY) ;
gui . sendText ("Affected node pair is (" + srcNodelD + "," + destNodelD +
| Pv6Address srcRouterl D = (| Pv6Address) (myBasePl B. ht Nodel Dt oRout er | D. get ( new
I nteger(srcNodelD)));
| Pv6Address destRouterl D = (| Pv6Address) (myBasePl B. ht Nodel Dt oRout er | D. get ( new
I nt eger (dest Nodel D)) ) ;

//first, determine the identity of the live path

Vect or bePat hs = get Thi sNodePai r sBEpat hs(srcNodel D, dest Nodel D) ;
Enuneration thesePaths = bePaths. el enents();

whi | e (thesePat hs. hasMor eEl ement s())

BasePI B. Path thi sPath = (BasePl B. Path) (thesePaths. next El enent());
if (deadPath != thisPath)
{

livePath = thisPath;

}
}

/1if this was the only path, then nothing can be done
if (livePath == null)
{

return;

}

gui . sendText (" NO SURVI VING PATH! I'I");

gui . sendText ("Resent surviving path " + livePath.getPathlD() + " to reset
the destination.");

BasePl B. Pat h newRedundant Pat h = nyBasePI B. routi ngAl gorithm fi ndPat h(srcRouterl D,
dest Rout er | D,
I'i vePat h,

myBasePI B. rout i ngAl gori t hm SHORTEST_W DEST_MOST_DI SJO NT_PATH) ;
/Inow, attenpt to find and send a new alternate path
i f (newRedundantPath != null)
{
nt eger newRedundant Pat hl D = newRedundant Pat h. get Pat hl D() ;
f (! newRedundant Pat h. bCr eat ed)

|
i
{
myBasePI B. set upPat h( newRedundant Pat h, newRedundant Pat hl D. i nt Val ue(),
FI owRout i ngTabl eEntry. | NSTALLED FOR_BE) ;
newRedundant Pat h. bCreat ed = true;

}

alternate path.");

}

gui . sendText (" Sendi ng path " + newRedundantPathlD + " as the new
gui . sendText (" Redundancy restored!");

el se//resend the sane path as alternate

{
newRedundant Path = |i vePat h;

gui . sendText ("Unable to find a redundant path. Resending the
primary path as alternate.");
}/lend if else

sendTabl eEntri es(srcRouter| D, destRouterlD,
l'ivePat h. get Pat hl D().intVal ue(), newRedundant Pat h. get Pat hl D(). i ntVal ue());

}/ 1 end restoreRedundancy()

/**
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* Tests to see if there are two BE routes currently active for this pair.
* @aram srcNodel D the source node

* @aram destNodel D the destination node

* @eturn whether there are

*/

private bool ean t woBErout esActive(int srcNodel D, int destNodel D)

i f (get Thi sNodePai r sBEpat hs(srcNodel D, dest Nodel D). si ze() == 2)

return true;

}

el se

return fal se;
}
}

/**

* Expires best effort paths for this node pair.

* @aram srcNodel D

* @aram dest Nodel D

*/

private void expireBEpaths(int srcNodel D, int destNodel D)

{
BasePl B. Pat h t hi sPat h;

Enuner ati on t hesePat hs = get Thi sNodePai r sBEpat hs(srcNodel D, dest Nodel D). el ements();
whi | e (thesePat hs. hasMor eEl ement s())

thi sPath = (BasePlI B. Path) (thesePaths. nextEl ement());
if ((thisPath.getSrcNodel D() == srcNodel D) && (thisPath. get Dest Nodel D() ==
dest Nodel D))

t hi sPat h. expi reBEpat h() ;
}
}
}

/**

* Unexpire those BE paths that have been expired
* past the required tine.

*/

private void unexpireBEpaths()

bePat hAdmi n(0, 0, UNEXPI RE_PATHS);
}

/**

* Determines the best effort paths for this node pair.

* @aram srcNodel D

* @aram dest Nodel D

* @eturn best effort paths as a Vector

*

/

private Vector getThi sNodePairsBEpat hs(int srcNodel D, int dest Nodel D)
{

}
/**

* Determines if global congestion is occurring.
* @eturn whether it's occurring

return bePat hAdm n(srcNodel D, dest Nodel D, GET_PATHS);

*/
protect ed bool ean gl obal Congesti onl sCccurring()
{
return gl obal Congesti on;
}
/**

* Initiates gl obal congestion resolution procedures.
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private void initiated obal Congesti onResol ution()

{

}

*

/

gl obal Congesti on = true;

BasePI B. Pat h t hi sPat h;
BasePI B. Pat hQoS t hi sqos;//nust be declared here for visibility purposes

/lupdate | oss rate paraneters for all BE paths
bePat hAdmi n(0, O, UPDATE_LOSS_RATE);
gui . sendText (" Cal cul ating fairness variables...");

cal cul at eFai rnessVari abl es();

ti meLast Acti onTaken = SystemcurrentTimeM I 1is();

/**

* Calculates fairness variables to base |later

ti meLast Congestion = SystemcurrentTimeM I 1is();

* actions upon.

*

/

private void cal cul at eFai rnessVari abl es()

{

Vector bepaths =
Vector sanples =

| Pv6Addr ess thi

int
int

srcNodel D;
dest Nodel D

new Vector();
new Vector();

sRout er | D

BasePI B. Pat h t hi sbepat h;
BasePI B. Pat h t hi sPat h;

int

count = O;

sanpl es = (Vector) (beNodePairAdm n( GET_LOSS _RATES)) ;

meanLossRat e = conput eMean(sanpl es) ;
gui . sendText ("Mean loss rate is " + (meanLossRate/ 100) + "% ");

st dLossRat eDev =

| **

private short

{

*

*

*

*

*

conput eSt dDev( sanpl es) ;
gui . sendText ("Loss rate SDis " + (stdLossRateDev/100) + "%");

Conputes loss rate fromthis node pair assunming all traffic is on alternate path.

@aram srcNodel D
@aram dest Nodel D
@eturn best effort

/

I ong ti neDepl oyed = 0;
short | ossRate =
BasePI B. Pat h t hi sPat h;
Vector bepaths =

0;

|l oss rate

| ossRat eFr oniThi sNodePai r (i nt srcNodel D, int dest Nodel D)

get Thi sNodePai r sBEpat hs(srcNodel D, dest Nodel D) ;

if (srcNodel D == dest Nodel D)

{
}

return O;

Enunerati on thesepaths =
whi | e (thesepat hs. hasMor eEl ement s())

bepat hs. el enent s();

thi sPath = (BasePl B. Pat h) thesepaths. next El ement () ;
if (thisPath.bBestEffortTraffic & (thisPath.tinmeBEinitiated > ti meDepl oyed))

}

ti meDepl oyed = thisPath.tineBEinitiated;
| ossRate = thisPath. best Ef fortLossRate;
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return | ossRate;
}
/**
* Term nates gl obal congestion and proactive nonitoring.
*/
private void term nated obal Congesti onResol ution()

gl obal Congestion = fal se;

}

| **

* Fairness neasure that will release resources fromthose pairs
* not experiencing congestion.

* @eturn success of operation

*/

private bool ean robFroniTheRi ch()

{
return ((Bool ean) (beNodePairAdm n(ROB_I F_RICH))). bool eanVal ue();

}//end robFronTheRi ch()

| **

* Fairness nmeasure that will give nobre resources to those pairs
* experienci ng undue congestion

* @eturn success of operation

*/

private bool ean gi veToThePoor ()

{

recl ai mExpi redPat hs() ;
return ((Bool ean) (beNodePairAdm n(d VE_| F_POOR))) . bool eanVal ue();

}/ 1 end gi veToThePoor ()

/**

* Reclainms expired paths that have no congestion for reuse.
*/

private void reclai nExpiredPat hs()

{

BasePI B. Path thisPath = null;
BasePI B. Pat hQoS t hi sPat hQoS;

Enuneration all Paths = nmyBasePI B. ht Pat hs. el enents();
whi |l e (al | Pat hs. hashor eEl enents())

thisPath = (BasePlI B. Path) (all Paths. nextEl enment());
if (thisPath.bestEffortTrafficCondition == BasePl B. Pat h. RED)

if (thisPath.bestEffortLossRate < nmyBasePl B.t hreshol dLossRat e)

t hi sPat h. unexpi r eBEpat h() ;
}
}
}
}

/**

* Resets traffic for a node pair back to the prinary path.
* @aram srcNodel D

* @aram dest Nodel D

*/

private bool ean switchback(int srcNodel D, int destNodel D)

{
if ((SystemcurrentTimeMIlis() - tinmeLastSwi tchback) <
(myServer. get AC cycl ePeriod()))
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{
}

BasePI B. Path primaryPath = primaryPat hFor Thi sNodePai r (srcNodel D, dest Nodel D) ;
BasePI B. Path al ternatePath = pri naryPat hFor Thi sNodePai r (srcNodel D, dest Nodel D) ;

return fal se;

| Pv6Address srcRouterl D = (| Pv6Address) (myBasePl B. ht Nodel Dt oRout er | D. get ( new

I nteger(srcNodel D)));

| Pv6Addr ess dest Routerl D = (I Pv6Address) (myBasePl B. ht Nodel Dt oRout er | D. get (new

I nt eger (dest Nodel D)) ) ;

sendTabl eEntri es(srcRouter| D, destRouterlD,

pri maryPat h. get Pat hl D().i nt Val ue(), alternatePath.getPathlD().intValue());

mySer ver . sendCongest i onAdvi sory(srcRouter| D, primaryPath.getPathlD().intValue(),

Congest i onAdvi sory. GREEN) ;

gui . sendText ("Reset traffic split to 100/0 for node pair (" + srcNodelD +

," + destNodelD + ").");

gui . sendText (" Congesti on Advi sory GREEN sent to node " + srcNodelD + ".");

timeLast Swi tchback = SystemcurrentTinmeM I lis();
return true;

}

/**

* Determines the primary path for this node pair based on deploynent tine.

* @aram srcNodel D

* @aram dest Nodel D

* @eturn primary path

*/

private BasePl B. Pat h pri nmaryPat hFor Thi sNodePai r (i nt srcNodel D, int dest Nodel D)

BasePl B. Pat h t hi sPat h;
BasePI B. Path primaryPath = null;
long | eastRecentTine = SystemcurrentTimeM I 1is();

Vect or bepaths = get Thi sNodePai r sBEpat hs(srcNodel D, dest Nodel D) ;

Enuner ati on enum = bepat hs. el enments();
whi | e (enum hasMor eEl ement s())

thisPath = (BasePlI B. Path) (enum next El enent ());
if (thisPath.timeBEi nitiated < | eastRecent Ti me)

| east Recent Time = thisPath.tinmeBEinitiated;
primaryPath = thisPath;
}
}

return primaryPat h;
}
/**
* Determines the alternate path for this node pair based on depl oynment tine.
* @aram srcNodel D
* @aram dest Nodel D
* @eturn alternate path
*/
private BasePl B. Pat h al t er nat ePat hFor Thi sNodePai r (i nt srcNodel D, int dest Nodel D)
BasePI B. Pat h t hi sPat h;
BasePI B. Path alternatePath = null;
| ong nost RecentTine = O;

if (!twoBEroutesActive(srcNodel D, dest Nodel D))
{

}

return null;
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Vect or bepat hs = get Thi sNodePai r sBEpat hs(srcNodel D, dest Nodel D) ;

Enuner ati on enum = bepat hs. el ement s();
whi | e (enum hasMor eEl ement s())
{
thi sPath = (BasePlI B. Path) (enum nextEl enent ());
if (thisPath.timeBEinitiated > npstRecentTine)
{
nost Recent Tine = thisPath.tinmeBEinitiated;
al ternatePath = thi sPat h;
}
}

return alternatePat h;
}
/**
* Conputes the nean of a set of val ues.
* @aram sanples the set of values (nust cast to |nteger)
* @eturn nmean
*/
private doubl e conput eMean(Vector sanpl es)
{
int sum= 0;
int count = 0;

Enuner ati on enum = sanpl es. el ements();

whi | e (enum hasMor eEl ement s())

{
sum += ((Integer) (enumnextEl enment())).intValue();
count ++;

}
if (count == 0)
{

}

el se

{

}
}
/**
* Conmputes the standard deviation of a set of val ues.
* @aram sanples the set of values (nust cast to |nteger)
* @eturn standard deviation
*/
private doubl e conput eStdDev(Vector sanples)
{
int sum= 0;
int thi skl ement = 0;
int count = 0;
doubl e mean = conput eMean(sanpl es) ;

return O;

return sum/ count;

Enuner ati on enum = sanpl es. el ements();
whi | e (enum hasMor eEl ement s())

thisElement = ((Integer) (enum nextElenent())).intValue();
sum += (thi sEl enent - nean) * (thisE enment - nean);
count ++;

}
if (count == 0)
{

}

el se

{

return O;

return java.l ang. Mat h. sqrt ((doubl e) (sum/ count));
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}
}
/**
* Method through which a BE path failure notification is made.
* @aram failedPathlD |ID of the failed path
*/
protected voi d handl eBEpat hFai |l ure(int failedPathl D)
{
gui . sendText ("\nHandling failure of path " + failedPathlD + ".");
BasePl B. Path thi sPath = (BasePl B. Pat h) (myBasePl B. ht Pat hs. get (new
Integer(failedPathiD)));
int srcNodel D = thisPath. get SrcNodel DY) ;
| Pv6Address srcRouterl D = (| Pv6Address)
(nmyBasePI B. ht Nodel Dt oRout er | D. get (new | nt eger (srcNodel D)));
mySer ver . sendCongest i onAdvi sory(srcRouter| D,
t hi sPat h. get Pat hl D() . i nt Val ue(), Congesti onAdvi sory. RED);
gui . sendText (" Congesti on Advisory RED sent to node " + srcNodelD + ".");
gui . sendText ("Attenpting to restore redundancy...");
rest or eRedundancy(fail edPat hl D) ;

}
/**
* \Whenever BEM generates new paths for a BE node pair, this nethod is called
* to send the table entries and performthe bookkeeping. Note that entries
* are always sent in pairs. This is to force a 100/0 reset on the BET agent
* end and acceptance of these new entries as active.
* @aram srcRouterlD the source router ID
* @aram destRouterlD the destination router ID
* @aram primaryPathl D the primary path ID
* @aram alternatePathID the alternate path ID
*

~

private void sendTabl eEntries(l Pv6Address srcRouterl D, |Pv6Address dest RouterlD,
int primaryPathl D, int alternatePathlD)

{
int destNodel D = ((Integer)
(myBasePI B. ht Rout er | Dt oNodel D. get (dest RouterI D.toString()))).intValue();

try

{
Enuneration interfaces = vBestEffortDest Adds. el ements();
while (interfaces. hasMoreEl ements())

| Pv6Address thislnterfaceAdd = | Pv6Address. get ByName( (Stri ng)
interfaces. nextEl ement());

if (destNodel D == ((BasePI B. | nterfacel nfo)
myBasePl B. ht I nterfaces. get (thislnterfaceAdd.toString())).getNodel D().intValue())

nySer ver . sendBETUpdat e(srcRouter| D, thislnterfaceAdd, primaryPathlD, O,
0);
BasePlI B. Path primaryPath = (BasePl B. Pat h)
myBasePl B. ht Pat hs. get (new | nt eger (pri maryPathl D)) ;
primaryPath.initiateBestEffortTraffic();
primaryPath.timeBEinitiated -= 1;//other parts of
code require primary path to be ol der
mySer ver . sendBETUpdat e(srcRouter| D, thislnterfaceAdd, alternatePathlD, O,
0);
BasePl B. Pat h al ternatePath = (BasePl B. Pat h) nyBasePl B. ht Pat hs. get (new
I nteger(alternatePathlD));
alternatePath.initiateBestEffortTraffic();

}
catch (UnknownHost Excepti on uhe)
{

Best Ef f ort Manager. ") ;

System out. println("UHE thrown by sendTabl eEntries() in
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}

/**

* All code requiring an all paths iterator is consolidate here.
* @aram srcNodelD source node ID

* @aram dest Nodel D destination node |ID

* @aram action byte code defined at beginning of class

* @eturn

*/

private Vector bePathAdm n(int srcNodel D, int destNodel D, byte action)

{

Vector bepaths = new Vector();
BasePI B. Pat hQoS t hi sPat hQoS;
Enuneration al |l Paths = nyBasePl B. ht Pat hs. el enent s() ;

whi l e (al |l Pat hs. hasMor eEl enents())

{
BasePlI B. Pat h t hi sPath = (BasePl B. Pat h) al | Pat hs. next El ement () ;

switch (action)
{
case UNEXPI RE_PATHS:
if (thisPath.bestEffortTrafficCondition ==
BasePI B. Pat h. RED)
{
if ((SystemcurrentTimeMIlis() - thisPath.tineConditionRed) >
(PATH_EXPI RATI ON_TI ME * nyBasePI B. ti meScal e))
{

i f (thisPath.unexpireBEpath())
{

gui . sendText ("\nPath " +
thi sPath.getPathlD() + " has been unexpired.");
}

}
}

br eak;

case GET_PATHS:
if ((thisPath.bBestEffortTraffic) &&
(thi sPat h. get SrcNodel D() == srcNodel D)
&& (thisPath. get Dest Nodel D() == dest Nodel D))

bepat hs. add(t hi sPat h);
}

br eak;

case UPDATE_LOSS RATE:
if (thisPath.bBestEffortTraffic)

BasePl B. Pat hQoS t hi sqos =
t hi sPat h. get Pat hQoSArray() [ BasePl B. BEST_EFFORT] ;
t hi sPat h. best Ef fort LossRate = t hi sqos. get Packet LossRate();

}

br eak;

case RECLAI M PATHS:
if (thisPath.bestEffortTrafficCondition == BasePl B. Pat h. RED)

if (thisPath.bestEffortLossRate < myBasePl B.t hreshol dLossRat e)
t hi sPat h. unexpi reBEpat h() ;

}
}

br eak;

defaul t:
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br eak;
}//end switch
Y/ lend while
return bepat hs;

}//end bePat hAdmi n()

/**

* All code requiring node pair iterator is consolidate here.
* @aram action byte code defined at beginning of class
* @eturn

*/

private bject beNodePairAdm n(byte action)

{

bool ean bResult = fal se;
Vector vResult = new Vector();

BasePI B. Path thisPath = nul|;
BasePl B. Pat h pat hToExpire, prinmaryPath, alternatePath, reclainPath;
BasePI B. Pat hQoS t hi sPat hQoS;

try

Enuner ati on eSources = vBestEffortRouters. el enents();
whi | e (eSources. hasMor eEl enents())

{

eSour ces. next El enent ());

| Pv6Address srcRouterl D = | Pv6Address. get ByName( (Stri ng)

I nteger srcNodel D = ((BasePIB. I nterfacel nfo)
myBasePl B. ht I nt erfaces. get (srcRouterID.toString())).getNodel IX);
Enuner ati on eDestinations = vBestEffortRouters. el enents();
whi | e (eDesti nations. hasMoreEl enents())

| Pv6Address interfaceAddress = | Pv6Address. get ByName( (Stri ng)
eDestinations. nextEl enent());

I nt eger destNodel D = ((BasePIB. I nterfacel nfo)
nyBasePl B. ht I nterfaces. get (i nterfaceAddress.toString())).getNodel I();

| Pv6Addr ess destRouterl D = (| Pv6Address)
myBasePI B. ht Nodel Dt oRout er | D. get (dest Nodel D) ;

switch (action)

{
case DEPLOY_I NI TI AL_PATHS:
/| SHORTEST W DEST PATH is used for the prinmary path
BasePI B. Pat h bePat hl =
myBasePl B. rout i ngAl gorithm fi ndPat h(srcRouterl D,

dest Router| D,
nul I,

nyBasePI B. r out i ngAl gori t hm SHORTEST_W DEST_PATH) ;
if (bePathl !'= null)
{
nt eger bePat hl D1 = bePat hl. get Pat hl D() ;
f (!bePathl. bCreated)

|
i
{
myBasePI B. set upPat h( bePat hl, bePat hl D1. i nt Val ue(),
FI owRout i ngTabl eEntry. | NSTALLED_FOR BE) ;
bePat hl. bCreated = true;

}
gui . sendText ("Path " +
bePat hl D1.intValue() + " deployed as primary for (" + srcNodelD.intValue() + "," +
dest Nodel D.i ntValue() + ").");
[/ SHORTEST W DEST MOST DI SJONT PATH is used for the
alternate path
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BasePl B. Pat h bePat h2 =
nmyBasePI B. rout i ngAl gori thm fi ndPat h(srcRouterl| D,

dest Rout er | D,
bePat h1,

myBasePI B. rout i ngAl gori t hm SHORTEST_W DEST_MOST_DI SJO NT_PATH) ;
if (bePath2 !'= null)

I nteger bePat hl D2 = bePat h2. get Pat hl D() ;
if (!bePath2. bCreated)

nyBasePI B. set upPat h( bePat h2, bePat hl D2. i nt Val ue(),
FI owRout i ngTabl eEntry. | NSTALLED _FOR_BE) ;
bePat h2. bCreated = true;

}

bePat hl D2. i nt Val ue() + " deployed as alternate.");

gui . sendText ("Path " +

el se

bePat h2 = bePat h1;
gui . sendText (" No
alternate path available.");

}
sendTabl eEntri es(srcRouterl D,
dest Rout er| D, bePat hl. getPathl D().intVal ue(), bePath2.getPathlD().intValue());
Y/ lend if
br eak;

case GET_LOSS_RATES:
if (srcNodel D != dest Nodel D)

{
vResul t . add(new | nteger ((int)
(1 ossRat eFr oniThi sNodePai r (srcNodel D. i nt Val ue(), destNodelD.intValue())))):

br eak;

case ROB_I F_RI CH:
int | eastBandw dth, thisBandw dth;
if
( (1 ossRat eFr onirhi sNodePai r (srcNodel D. i nt Val ue(), destNodel D.intValue()) < (meanLossRate -
stdLossRat eDev)) &&
t woBEr out esAct i ve(srcNodel D. i nt Val ue(),
dest Nodel D. i nt Val ue()))

{
| east Bandwi dt h = 2000000000; //a | arge nunber
Vector bepaths =
get Thi sNodePai r sBEpat hs(srcNodel D. i nt Val ue(), destNodel D.intValue());
Enurerati on enum = bepat hs. el enents();
whi | e (enum hasMor eEl ement s())

thisPath = (BasePl B. Path) (enum nextEl enent());
t hi sPat hQoS =
t hi sPat h. get Pat hQoSArray() [ BasePl B. BEST_EFFORT] ;
t hi sBandwi dt h = t hi sPat hQoS. get Avai | abl eBandwi dt h() ;
if (thisBandwi dth < | east Bandwi dt h)

| east Bandwi dt h = t hi sBandwi dt h;
pat hToExpi re = thisPath;

}

}
srcRouterI D = (I Pv6Address)
(myBasePI B. ht Nodel Dt oRout er | D. get (srcNodel D)) ;
mySer ver . sendCongest i onAdvi sory(srcRouterl D,
t hi sPat h. get Pathl D() . i ntVal ue(), Congesti onAdvi sory. RED);
t hi sPat h. expi reBEpat h() ;
bResult = true;
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gui . sendText (" Deacti vat ed
path " + thisPath.getPathlD() + " for node pair (" + srcNodelD + "," + destNodelD +

")
rich.");

gui . sendText (" Robbed from the

Y/ lend if
br eak;

case G VE | F_POOR
i nt currentBandwi dt h,
swi t chbackBandwi dt h, recl ai mabl eBandwi dt h;
if
( (1 ossRat eFr onirhi sNodePai r (srcNodel D. i nt Val ue(), destNodel D.intValue()) > (nmeanLossRate +
stdLossRateDev)) &&
t woBEr out esAct i ve(srcNodel D. i nt Val ue(),

{
pri maryPath =
pri mar yPat hFor Thi sNodePai r (srcNodel D. i nt Val ue(), destNodel D.intValue());
alternatePath =
al t er nat ePat hFor Thi sNodePai r (srcNodel D. i nt Val ue(), dest Nodel D.i ntVal ue());
srcRouterI D = (I Pv6Address)
(myBasePI B. ht Nodel Dt oRout er | D. get (srcNodel D)) ;
dest RouterI D = (1 Pv6Address)
(myBasePI B. ht Nodel Dt oRout er | D. get (dest Nodel D) ) ;
reclai mPath =
myBasePl B. rout i ngAl gori thm fi ndPat h(srcRouterl| D,

dest Nodel D. i nt Val ue()))

dest Rout er | D,
nul |,

myBasePI B. rout i ngAl gori t hm SHORTEST_W DEST_PATH) ;
i f (twoBEroutesActive(srcNodelD.intVal ue(),
dest Nodel D. i nt Val ue()))

t hi sPat hQoS =
pri maryPat h. get Pat hQoSArray() [ BasePl B. BEST_EFFORT] ;
sw t chbackBandw dth =
t hi sPat hQoS. get Avai | abl eBandwi dt h() ;
t hi sPat hQoS =
al t er nat ePat h. get Pat hQoSArray() [ BasePl B. BEST_EFFORT] ;
current Bandwi dt h = t hi sPat hQoS. get Avai | abl eBandwi dt h();
}

el se

t hi sPat hQoS =

pri maryPat h. get Pat hQoSArray() [ BasePl B. BEST_EFFORT] ;
current Bandwi dt h = t hi sPat hQoS. get Avai | abl eBandwi dt h();
sw t chbackBandwi dth = 0;

}
if (reclainmPath !'= null)
{

t hi sPat hQoS =
recl ai nPat h. get Pat hQoSArray() [ BasePl B. BEST_EFFORT] ;

recl ai mabl eBandwi dt h
t hi sPat hQoS. get Avai | abl eBandwi dt h() ;

el se

{

recl ai mabl eBandwi dt h 0;

}
if ((sw tchbackBandwi dth > currentBandwi dth) &&
(swi t chbackBandwi dt h >= recl ai mabl eBandwi dt h))

bResult = switchback(srcNodel D.intVal ue(),
dest Nodel D. i nt Val ue());
gui . sendText (" Gave to
the poor.");

107



el se if (reclai nabl eBandwi dth > current Bandwi dt h)

Vector bepaths =

get Thi sNodePai r sBEpat hs(srcNodel D. i nt Val ue(), destNodel D.intVal ue());
Enuner ati on enum = bepat hs. el enents();
whi | e (enum hasMor eEl enent s())

thi sPath = (BasePl B. Path) (enum nextEl enent ());
thisPath.term nateBestEffortTraffic();
}

mySer ver . sendCongest i onAdvi sory(srcRouterl D,
recl ai mPat h. get Pat hl () . i nt Val ue(), Congesti onAdvi sory. GREEN) ;
gui . sendText (" Depl oyed
fatter path " + reclainPath + " for node pair (" + srcNodelD + "," + destNodelD + ").");
BasePI B. Pat h bePat h2 =
myBasePl B. rout i ngAl gori t hm fi ndPat h(srcRouterl| D,

dest Rout er | D,
recl ai nPat h,

nmyBasePI B. rout i ngAl gorit hm SHORTEST_W DEST_MOST_DI SJO NT_PATH) ;
if (bePath2 != null)

{
I nt eger bePat hl D2 = bePat h2. get Pat hl ) ;
if (!bePath2. bCreat ed)
{
myBasePI B. set upPat h( bePat h2, bePat hl D2. i nt Val ue(),
FI owRout i ngTabl eEntry. | NSTALLED _FOR BE) ;
bePat h2. bCreated = true;
}

gui . sendText (" Depl oyed new alternate path " + bePathlD2 + " for node pair (" +
srcNodelD + "," + destNodelD + ").");

el se
{
bePat h2 =
recl ai nPat h;
Y//end if

sendTabl eEntri es(srcRouter| D, destRouter!| D, reclainPath.getPathlD().intValue(),
bePat h2. get Pat hl D() . i nt Val ue());
bResult = true;
gui . sendText (" Gave to

the poor.");
Y/ lend if
Y/ lend if
br eak;
defaul t:
br eak;
}//end switch
Y/ /end while
Y/ lend while
}
catch (UnknownHost Exception uhe)
{
System out. println("UHE t hrown by beNodePairAdm n() in
Best Ef f ort Manager. ") ;
}

switch (action)

{
case GET_LOSS RATES:
return vResult;

case ROB_| F_RI CH
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return new Bool ean(bResul t);

case G VE_| F_POOR:
return new Bool ean(bResult);

defaul t:

return null;
}

}// end beNodePai r Adm n()
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APPENDIX D: BEST EFFORT TABLE AGENT SOURCE CODE

/1 25Feb02[ Wof ford] - Sudafed renaned Congestion Advisory.
/131Jan02[ Wi] - repackaged
//09Cct 01 Wf ford] - created

/1w
package org.saammet.saam agent.router;

import java.util.*;
i nport java. net. | net Address;
i mport java. net.UnknownHost Excepti on;

i mport org.saamet.saam control .*;
i nport org.saanmet.saam agent. *;
i nport org.saammet.saamrouter.*;
i nport org.saanmet.saam net. *;
i nport org.saanmet.saam event. *;
i nport org.saammet.saam nmessage. *;
i mport org.saammet.saam gui.*;
/1inmport com objectspace.jgl.HashMap;//[cw may be overkill for this class
/ *
The BestEffortTable is a | ookup table the router uses to associate
unl abel ed BE traffic destined for a particular address to a path
that is installed in the FlowRoutingTable. It is "snarter"” than a
FI owRout i ngTabl e, though, in that it will actually make decisions
i ndependent of examining a single entry.
/
public class BestEffortTabl e extends Hashtabl e inplements Tabl eResi dent Agent,
MessagePr ocessor
{

//the maxi mum nunber of routes to split to a single destination
public final static int MAX_ROUTES = 2;

N

private Tabl eGui gui;

private Vector colummLabels = new Vector();

private Control Executive control Exec;

private byte[] nmyMessages = //-crcp generic nessage registration
Message. BEST_EFFORT_TBL_ENTRY,

;. Message. CONGESTI ON_ADVI SORY

/' hashtabl e of TrafficDestination objects keyed by destination |P address
private Hashtabl e destinationList = new Hashtabl e();

/1 The BestEffortTabl e acts autononously at various intervals depending

//on nmost recent information in Congeston Advi sory nmessages for a server. |If a
//TrafficDestination is congested, it will "redirect" traffic
/lperiodically to an alternate route. |If the congestion has cleared,

//then it will gradually revert until all traffic is carried by the
//primary route. These constants allow for tuning perfornance.
/1 Phi |l osophi cally, when you have congestion, you want to act QU CKLY.
/1 When the congestion clears, gradually revert to the primary route.
/1 The primary route is often nore desirable AND it's best to have
// maxi mum room avail able on the alternate route to handles extra traffic.
private int timeScale;
private final static int REDI RECT_| NTERVAL = 200;//shoul d al ways be equal to AC Cycle
time
private final static int REVERT_I NTERVAL = 1800000;//30 mi nutes
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/**

* Constructs a BestEffortTable.
*/

publ i c BestEffortTabl e()

{

/I super (true);

/**
* A TrafficDestination is a data structure used by the BestEffortTable to
track information on a per-destination basis. Notably, it holds two
key arrays. Array currentSplit holds the split in percentage over the
nunber of routes being used. Array routelnstalled tracks whether those
routes have been received fromthe server and installed by BestEffortTable.
It is twice as big in order to hold a full conplenment of spare routes.

* %k ok Ok

*/
public static class TrafficDestination

{
public | Pv6Address destination;
public int[] currentSplit = new int[ MAX_ ROUTES];//the traffic split
public bool ean[] routelnstalled = new bool ean[2 * MAX_ROUTES];
public int primryRoute;//array index pointer for primary route
public int nextEntry;//array index pointer for where to install next route

public byte trafficCondition;

publ i c bool ean isUsi ngAlt ernat eRout e;
public long tinmeLastRedirect;

public long tinmelLastRevert;

public TrafficDestination(lPv6Address address)

{

destination = address;
primaryRoute = 0;
nextEntry = 0;
currentSplit[primaryRoute] = 100;
trafficCondition = CongestionAdvi sory. GREEN;

i sUsi ngAl ternateRoute = fal se;

ti meLast Redirect = 0;

}
}
/**
* Required install method of the ResidentAgent interface.
*
* @aram control Exec The Control Executive on the router this agent
* is being installed on.
* @aram String instanceNane
* @aram String [] paraneters - array of paranmeters for this agent
*/

public void install (Control Executive control Exec,
String instanceNane,
String [] paraneters)

col umLabel s. add(" Dest | Pv6 Address");
col umLabel s. add("Map to Path");

col umLabel s. add("Traffic Split");
int[] columWdths = {210, 120, 120};

gui = new Tabl eCui (control Exec. mai nQui . get Cont ent Panel (), instanceNane, colummLabels,

col umW dt hs) ;
control Exec. addTabl eCui (gui); //-crcy
this.control Exec = control Exec;
control Exec. regi st er MessagePr ocessor (nyMessages, this);
ti meScal e = control Exec. get Ti meScal e() ;

/**

* Required uninstall nethod of the ResidentAgent interface.
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*/
public void uninstall (){
clear();

/**

* The conmmuni cati on nmethod through whi ch Resident Agent talks.
* @aram message a BETE with only the destination field

* @eturn a BETE with a path IDfilled in to map to

*/

public Message query (Message nessage)

| Pv6Address dest Addr = ((BestEffortTabl eEntry) nessage). get Dest Addr () ;

int bucket Map = ((BestEffortTabl eEntry) nessage).getSplit();

Best Ef fort Tabl eEntry result = getBestEffortTabl eEntry(dest Addr, bucket Map);
return result;

}

/**
* Retrieves the BET entry for a destination address and bucket nap.
* @aram dest Addr
* @aram bucket Map
* @eturn the associated BETE
*/
publ i c BestEffortTabl eEntry getBestEf fort Tabl eEntry(|Pv6Address dest Addr, int
bucket Map)

TrafficDestination trafDest = (TrafficDestination)

destinationLi st. get(destAddr.toString());
/1if BE traffic is congested to this destination, redirect traffic to alternate path
if (trafDest !'= null) //may be no such entry yet; see RoutingAl ogrithm

if ((trafDest.trafficCondition == Congesti onAdvi sory. YELLOW &&
((SystemcurrentTineMIlis() - trafDest.tinmelLastRedirect) >
(REDI RECT_I NTERVAL * tineScale)))

{

}
if ((trafDest.isUsingAlternateRoute) &% (trafDest.trafficCondition
== Congesti onAdvi sory. GREEN) &&
((SystemcurrentTineMIlis() - trafDest.tinmeLastRevert) >
(REVERT_I NTERVAL * tineScale)))

redirect (trafDest);

{
}

int serialNo = trafDest.prinmaryRoute;
int split =0;//0%
int percentile = bucketMap * 10 + 10;//i.e. f(0)=10%..f(9)=100%

revert (trafDest);

for (int counter = 0; counter < MAX _ROUTES; counter++)

{
split += trafDest.currentSplit[counter];
if (percentile <= split)

serial No = (serial No + counter) % ( MAX_ROUTES * 2);
br eak;

}
}

String key = destAddr.toString() + serial No;
Best Ef fort Tabl eEntry result = (BestEffortTabl eEntry) get(key);

return result;//expect null if no entry; see RoutingAlgorithm
}
el se
{
return null;
}
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/**

* Returns true if the BET contains an entry indexed by destination

* address andfal se otherw se.

* @aram dest Addr, a particular destination |P address

* @eturn whether or not the BET contains an entry indexed by the destination address
*/

publ i c bool ean hasEntry(| Pv6Address dest Addr)

if (destinationList.get(destAddr.toString()) !'= null)
{
return true;
}
el se
{
return fal se;
}
}
/**

* Returns the entire contents of this BestEffortTable or null
* if this BestEffortTable is enpty.
* @eturn A Vector of all entries currently

* in the flow routing table.
*/

public Vector getTabl e()

{

if (isEmty())
{

return null;

}

Vector table = new Vector(size());
Enuneration e = elenents();
whi |l e (e. hasMoreEl enents())

{
Vect or oneRow = new Vector();
Best Ef fort Tabl eEntry betentry = (BestEffortTabl eEntry) e.nextEl ement();
oneRow. add("" + betentry. get Dest Addr());
oneRow. add("" + betentry. get Pat hMap());
oneRow. add("" + betentry.getSplit());
t abl e. add( oneRow) ;
}

return table;

}//End get Tabl e()

/**

* Required method for ResidentAgents for state transfer
* @aram replacenent the Resident Agent repl acenment

*/

public void transferState (ResidentAgent replacenent)

for (Enuneration e = el ements(); e.hasMoreEl ements();)

{

}
}

repl acenment . recei veSt at e((Best Ef fort Tabl eEntry) e.nextEl enent());

/**

* Required method for ResidentAgents to receive state.

* @aram nessage a BETE (one at a time fromtransferState())
*/

public void receiveState (Message nmessage){
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add( (Best Ef fort Tabl eEntry) message);

/**
* Required method for a Tabl eResi dent Agent .
* Not used by BET.
* @aram res FlowResponse
*
/
public void recei veFl owResponse (Fl owResponse res) { }

/**
* BestEffortTable process two types of nessages, BEST_EFFORT_TBL_ENTRY and
CONGESTI ON_ADVI SORY.
* For BEST_EFFORT_TBL_ENTRY, it adds the entry and makes a new TrafficDestination
* if it does not have this destination on file. For CONGESTI ON_ADVI SORY, it updates
t he
* congestion condition for the TrafficDestination using that pathlD.
* @aram nmessage CongestionAdvisory from Best Ef fort Manager on server
*/
public void processMessage (Message nessage)

{
switch (nessage. getBytes()[0])

case Message. BEST_EFFORT_TBL_ENTRY:
Best Ef fort Tabl eEntry betentry = null; //-crcp
try [//-crcp
{

betentry = new Best Effort Tabl eEntry(message. getBytes()); //-crcp
generic way

}
cat ch( UnknownHost Except i on uhe)
{
Systemout.printin("BestEffortTable Error: can't create |ocal BETE. "
+ uhe);

/lcheck to see if this is a known destination
i f (destinationList.containsKey(betentry.getDestAddr().toString()))

TrafficDestination traf Dest = (TrafficDestination)
destinationLi st.get(betentry. getDestAddr().toString());
betentry.serial No = traf Dest. nextEntry;
//check to see if a new conplenent of routes is being received
/1if so, reset previous splits to O and mark next route as prinary
bool ean reset Routes = (trafDest.nextEntry -
traf Dest. pri maryRoute == MAX_ROUTES)
|| (trafDest.primryRoute -
traf Dest.nextEntry == MAX_ROUTES);
if (resetRoutes)

for (int i =0; i < MAX_ROUTES; i ++)
{
int index = (trafDest.prinmaryRoute +
i) % (2 * MAX_RQUTES);
String key =
betentry. get Dest Addr ().toString() + index;
Best Ef fort Tabl eEntry zeroedentry =
(Best Ef fort Tabl eEntry) get (key);
zeroedentry.split = 0;
trafDest.currentSplit[i] = O;
}
betentry.split = 100;
trafDest.currentSplit[0] = 100;
traf Dest. prinmaryRoute =
(traf Dest. primaryRoute + MAX_ROUTES) % (2 * MAX_ROUTES);
traf Dest.isUsingAlternateRoute = fal se;

else //this is not a new primary route
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betentry.split 0;

=~

add(betentry);
traf Dest.routelnstal |l ed[traf Dest. nextEntry] = true;
traf Dest.nextEntry = (trafDest.nextEntry + 1) % (2 * MAX_ROUTES);

else //need to start tracking this new destination

TrafficDestination trafDest = new
TrafficDestination(betentry. getDestAddr());
destinationLi st. put(betentry. getDest Addr().toString(), trafDest);
betentry.serial No = traf Dest.nextEntry;
betentry.split = 100;
add(betentry);
traf Dest.routelnstall ed[traf Dest.nextEntry] = true;
traf Dest.nextEntry = (trafDest.nextEntry + 1) % (2 * MAX_ROUTES);

//this is the server's way of granting edge router pernission
control Exec. accept EdgeTraffic();
br eak;

case Message. CONGESTI ON_ADVI SCRY:
Congesti onAdvi sory pill = new Congesti onAdvi sory(nessage. getBytes());
//deternmine affected path
int affectedPathlD = pill.getPathlX);
Enuneration e = el enents();
whi l e (e. hasMoreEl enents())

Best Ef fort Tabl eEntry betentryl = (BestEffortTabl eEntry)
e. next El enent () ;
if (betentryl. getPathMap() == affectedPathl D)

TrafficDestination trafDest = (TrafficDestination)

destinationLi st. get(betentryl. getDestAddr().toString());
/lupdate the traffic condition
trafDest.trafficCondition = pill.pathCondition();
/1if RED, then route all traffic to unaffected path
if (pill.pathCondition() ==

{

Congest i onAdvi sory. RED)

int unaffectedSerial No;
int serialNo =
betentryl. get Seri al No();

if (serialNo ==
traf Dest. primaryRout e)
{
unaf fectedSerial No =
(serialNo + 1) % (2 * MAX_ROQUTES);
}
el se
{
unaf f ectedSeri al No =
(serialNo - 1) % (2 * MAX_ROUTES);
}

String unaffectedKey =
traf Dest.destination.toString() + unaffectedSerial No;

Best Ef f ort Tabl eEntry unaffectedEntry
= (BestEffortTabl eEntry) get (unaffectedKey);

bet entryl. set Pat hMap(unaf f ect edEnt ry. get Pat hvap() ) ;
gui.fill Tabl e(get Tabl e());
}

br eak;

defaul t:
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br eak;

}/ 1 End processMessage()

/**

* Redirects one bucket of traffic fromthe primary to alternate path.
* @aram trafDest the traffic destination
* @eturn success of operation

*/

private bool ean redirect(TrafficDestination trafDest)

{

int primryRoute =
int alternateRoute

traf Dest. pri maryRout e;
= (trafDest.primaryRoute + 1) % (2 * MAX_ROUTES);

if ((trafDest.currentSplit[0] >= 10) &&
(traf Dest.routelnstal l ed[al ternateRoute]))

{

String prinmaryKey = trafDest.destination.toString() + prinmaryRoute;

Best Ef fort Tabl eEntry primaryEntry = (BestEffortTabl eEntry) get (pri maryKey);

al t er nat eRout e;

get (al t er nat eKey) ;

primaryEntry.setSplit(primaryEntry.getSplit() - 10);
trafDest.currentSplit[0] -= 10;

String alternateKey = trafDest.destination.toString() +
Best Ef fort Tabl eEntry alternateEntry = (BestEffortTabl eEntry)

alternateEntry.setSplit(alternateEntry.getSplit() + 10);
trafDest.currentSplit[1l] += 10;

gui . fill Tabl e(get Tabl e());
traf Dest.isUsingAlternateRoute = true;

traf Dest.tinmeLast Redirect = SystemcurrentTimeMI1is();

return true;

}
el se
{
}
}
/**

trafDest.tinmeLastRedirect = SystemcurrentTimeMI1is();

return fal se;

* Reverts one bucket of traffic back to the prinmary path.

* @aram traf Dest

the traffic destination

* @eturn success of operation

*/

private bool ean revert(TrafficDestination trafDest)

{

int primryRoute =
int alternateRoute

traf Dest. pri naryRout e;
= (trafDest.primaryRoute + 1) % (2 * MAX_ROUTES);

if (trafDest.currentSplit[0] <= 90)

{

String primaryKey = trafDest.destination.toString() + prinaryRoute;

Best Ef fort Tabl eEntry primaryEntry = (Best Effort Tabl eEntry) get (pri maryKey);

al t er nat eRout e;

get (al t er nat eKey) ;

primaryEntry.setSplit(primaryEntry.getSplit() + 10);
trafDest.currentSplit[0] += 10;

String alternateKey = trafDest.destination.toString() +
Best Ef fort Tabl eEntry alternateEntry = (BestEffortTabl eEntry)

alternateEntry.setSplit(alternateEntry.getSplit() - 10);
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trafDest.currentSplit[1l] -= 10;
gui.fill Tabl e(get Tabl e());

if (trafDest.currentSplit[1l] == 0)
{

}

traf Dest.tinmeLast Revert = SystemcurrentTimeMIIlis();

traf Dest.isUsingAlternateRoute = fal se;

return true;

}

el se

{
traf Dest.tinmeLast Redirect = SystemcurrentTimeMI1is();
return fal se;

}

/**

* Required nethod for MessageProcessors.
* @eturn nessage types processed

*/

public byte[] getMessageTypes()

{

return nyMessages;

}

/**

* Required method for Saanlisteners.

* @aram se event received

*/

public void recei veEvent (SaanEvent se){ }

/**
* |f a BestEffortTabl eEntry has already been constructed,
* this method allows it to be entered into the table.
* @aramentry The BestEffortTabl eEntry to be entered.
*/
public synchroni zed void add (BestEffortTabl eEntry betentry)
{
String key = betentry. getDest Addr().toString() + betentry.getSerial No();
put (key, betentry);
gui.fill Tabl e(get Tabl e());
}

| **

* Returns the contents of the best effort table
* in the formof a String (useful for displaying the table).
* @eturn A String representation of the contents of the

* entire table.
*/
public String toString()
{
String result = "Best Effort Table\n";

Enunerati on enum = el ements();
whi | e (enum hasMor eEl ement s())

Best Ef fort Tabl eEntry nextEntry = (BestEffortTabl eEntry) (enum nextEl enent());

result += nextEntry.toString() + "\n";

}

return result;
Y/ 1toString()
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}//end BestEffortTable
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APPENDIX E: CONGESTION ADVISORY MESSAGE SOURCE

CODE

/1 25Feb02[ Wof ford] - Sudafed renaned Congestion Advisory.
//131Jan02[ Wi] - repackaged

//129Jan02[ Wfford] - Rewote to conformto standard format (like DCM
/1 07DecO1] Wf ford] - Created.

package org. saammet.saam nessage;

i mport java. net.UnknownHost Excepti on;
import java.util.*;

i nport org.saammet.saam net.*;

i mport org.saammet.saamutil.*;

| **

* CongestionAdvisory is how a server tells a router whether or not it is

* experiencing congestion of its best effort traffic. It is
* also howit tells the router that congestion is relieved.
*/

public class CongestionAdvi sory extends Message{

public static final byte GREEN
public static final byte YELLOWN
public static final byte RED

0;
1;
2

//total length (in bytes) of fields bel ow
private final static short CADV_LENGIH = (short) (4 + 1);

int pathlD
byt e pat hConditi on;

publ i ¢ Congesti onAdvi sory(int pathlD, byte pathCondition)
{

super ( Message. CONGESTI ON_ADVI SORY) ;

this.pathl D = pathl D,

thi s. pathCondition = pathCondition;

bytes = Array.concat (type, PrinmitiveConversions.getBytes(CADV_LENGTH));
bytes = Array.concat (bytes, PrinmitiveConversions.getBytes(pathlD));
byt es Array. concat (bytes, pathCondition);

}

publ i ¢ Congesti onAdvisory (byte[] bytes)

{
super (Message. CONGESTI ON_ADVI SORY) ;
this.bytes = bytes;

int index = 3;//skip type and length fields

pathl D = PrinitiveConversions.getlnt(Array.get SubArray(bytes, index, index +4));
i ndex += 4;

pat hCondi ti on = bytes[i ndex];
}//end byte array based Constructor

public int getPathlX)

{
return pathl D
}
public byte pathCondition()
{
return pathCondition;
}
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public String toString()

{
String advisory = "Congestion Advisory Message:"
“\n Path ID=" + pathlD +
": Traffic condition = ";

swi tch (pathCondition)

{

case GREEN
advi sory += "GREEN';
br eak;

case YELLOW
advi sory += "YELLOW ;
br eak;

case RED:
advi sory += "RED";
br eak;

defaul t:
br eak;

}

return advisory;
}
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APPENDIX F: MODIFICATIONS TO ROUTING ALGORITHM
SOURCE CODE

| **

* Forwards the outbound packet to the appropriate Interface

* @aram packet A byte array representati on of the outbound packet.
*/

public void forwardPacket (|1 Pv6Packet packet)

int MN_APP_PATH ID = 65; // mrroring definition in server/BasePlB.java

byte I NT_SERV = 0x01; /1 last two bits of ToS field

byte DI FF_SERV = 0x02; //[cw] used to say 0x00 which is not cons. w FlowGenerator
byte BEST_EFF = 0x00; //[cw] BE packets will have default ToS setting

| Pv6Header v6Header = packet. get Header();
| Pv6Addr ess dest = v6Header. get Dest();

byte ToS = (byte) (v6Header.getToS() & 0x03); // obtain the last two bits

int flowabel = v6Header. getFl owlLabel ();
int pathlD = flowLabel & O0x00000FFF; // obtain the last 12 bits.

byte sl;
if (ToS == | NT_SERV)
if (pathID < MN_APP_PATH ID) // Path IDs 0-64 are reserved for signaling channels.
sl = Interface. CTRL_TRAFFI C_SL;
el se
sl = Interface. | NT_SERV_SL;
}
else if (ToS == DI FF_SERV)
{//[cw] changed from" =Interface. BEST_EFFORT_SL" bel ow
sl = Interface.DIFF_SERV_SL; // [GX] Need to handle DS later; check PHB bits.
}
else if (ToS == BEST_EFF) //[cw] added branch for BE traffic
{
sl = Interface. BEST_EFFORT_SL;
}
el se
e . . .
gui . sendText ("\ nUnknown ToS! Quit forwarding this packet.");
return;
}

/1[cw] This is the control structure that handles best effort traffic.
Basically, for an
//[cw] inbound BE packet to be routed, this router nmust be an edge router AND have an
entry
//[cw] inits BE table for that destination IP address. |If this is not the case,
than the

/1[cw] router nakes an edge notification and drops packets to that address until it
gets an

//[cw] entry. It will try again to notify the server if 20 seconds el apse with no
table

//[cw] entry. If this router is a protected core router (forbidden to handl e edge
traffic),

//[cw] it will always drop BE packets. Note that after being routed by this router,
t hey

//[cw] are assigned to a path and essentially partially encapsulated. That is, the
I ogic

/1[cw] below only applies to "naked packets", those without a pathlD. After they are
assi gned

//[cw] a pathlD at the ingress edge router, they are routed solely on that. Their
ToS bits
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/1[cw] still indicate BE, but this now only matters for bandw dth provision and
queuei ng.
if (ToS == BEST_EFF && (pathl D == 0))

{
if (control Exec.i sEdgeRouter())
{

int bucketMap = java.l ang. Mat h. abs(v6Header. get Source().toString().hashCode()) %
10;

Message nessage = (Message) (new BestEffortTabl eEntry(dest, 0, O, bucketMap));

Best Ef fort Tabl eEntry betentry = (BestEffortTabl eEntry)
best Ef f ort Tabl e. quer y(message) ;

if (betentry !'= null)

{
pat hl D = betentry. get Pat hMap();
| Pv6Header newHdr = new | Pv6Header (ToS, pathl D, v6Header.get Source(), dest);
| Pv6Packet newPkt = new | Pv6Packet (newHdr, packet. get UDPHeader (),
packet . get Payl oad());
packet = newPkt;
}

el se

/1if it hasn't been at |east 20s, give the server sone tine to
//update the BE topol ogy and depl oy routes; drop packets until then
if ((SystemcurrentTimeMIlis() - tinmeLastEdgeNotifSent) > (20000 *
control Exec. get Ti neScal e()))

{
control Exec. sendEdgeNot i fi cation(dest);
ti meLast EdgeNoti f Sent = SystemcurrentTineM 1 1lis();

}
r equeueBest Ef f Pkt ( packet) ;

}
}
el se
/1if it hasn't been at |east 20s, give the server sone to
/lupdate the BE topol ogy and depl oy routes; drop packets until then
if (!control Exec.isProtectedCore() &&

((SystemcurrentTineMIlis() - timelLastEdgeNotifSent) > (20000 *
control Exec. get Ti meScal e())))

{
control Exec. sendEdgeNot i fi cation(control Exec. getRouterld());
control Exec. sendEdgeNoti fi cati on(dest);
ti meLast EdgeNotifSent = SystemcurrentTineMI1lis();
requeueBest Ef f Pkt ( packet);

else if (!control Exec.isProtectedCore())

{
requeueBest Ef f Pkt (packet) ;

}
}//[cw] end control structure for best effort traffic

| Pv6Address nextHop = nul | ;
I nterface outboundlnterface = null;
Message nessage = (Message) (new Fl owRouti ngTabl eEntry(pathiD));

if (pathl D >= M N_APP_PATH | D)
{ // This is an application flow
/1[cw] changed "ent" to "frtentry" inside these brackets
FI owRout i ngTabl eEntry frtentry = (Fl owRouti ngTabl eEntry)
fl owRout i ngTabl e. query( message) ;
if (frtentry !'= null)

next Hop = frtentry. get Next Hop();
out boundi nterface = (Interface) interfaces.elementAt(frtentry.getlnterfaceNun());

}

el se

{
gui . sendText ("\nNo routing entry for this application packet! (pathlD =" +
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pathlD + "). Qit
return;

}

forwarding this packet.");

el se if (packet. queryPossibl eMessageType() == Message. DCV
{ /!l For DCMs, use destination in |IPv6 header; Wy not just broadcast?

next Hop = dest;

out boundl nterface = Interface.getMatchlnterface(interfaces, nextHop);
gui . sendText ("Routing a DCM packet (pathlD =" + pathlD +
") nextHop =" + nextHop.toString());

}
else if (pathlD %2 == 1)

{ //[cw] changed "entry" to "stentry" in this scope
/1 Need to check RBCCTs for router-bound signaling packets

/1 Router-bound signaling packets

/1 First find the right server ent

carry server root path |IDs

ry

ServerTabl e table = control Exec. get Server Tabl e();
//[cw] changed "entry" to "stentry" in this scope
Server Tabl eEntry stentry = tabl e. get Ent r yByRoot Pat hl d( pat hl D) ;

if (stentry == null)

{

gui . sendText ("\nNo server entry
pathlD + "). Qit f
return;

}
/1 Then | ook up the RBCCT for that

exists with matching root path id! (pathld =" +
orwardi ng this packet.");

server to find next hop

Rout er BoundCtrl ChTabl e rbccTabl e = stentry. get Rout er BoundCtril ChTabl e();
Rout er BoundCtr I ChTabl eEntry rbccEntry = rbccTabl e. get (dest);

if (rbccEntry !'= null)

{
next Hop = rbccEntry. get Next Hop() ;
out boundl nterface = Interface.getMtchlnterface(interfaces, nextHop);
}
el se
{
gui . sendText ("\nNo routing entry for this router-bound signaling packet! (pathlD
-
pathID + "). Qit forwarding this packet.");
return;
}
}
el se

{ //[cw] changed "ent" to "frtentry"
FI owRout i ngTabl eEntry frtentry = (
| owRout i ngTabl e. quer y(message) ;
if (frtentry !'= null)
{
next Hop = frtentry. get Next Hop();
out boundl nterface = (Interface)
}

el se

{

in this scope
Fl owRout i ngTabl eEnt ry)

interfaces.elementAt(frtentry.getlnterfaceNun());

gui . sendText ("\nNo routing entry for this server-bound signaling packet! (pathlD

pathlD + "). Qit
return;
}
}

forwarding this packet.");

/1 Now use ARP to determne the MAC address of the next hop.
/11t would be better if this ARP cache | ookup is done by the
/llnterface layer. This is a tenporary solution.
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message = (Message) (new ARPCacheEntry(nextHop));
/1[cw] changed "entry" to "arpcentry" in this scope
ARPCacheEntry arpcentry = (ARPCacheEntry) arpCache. query(nessage);

try

{
byte next MAC = arpcentry. get Next MAC() ;
gui . sendText (" next MAC. " + next MAC);

i f(v6Header . get Source().toString().equal s(IPv6Address. DEFAULT_HOST) )
{

v6Header . set Sour ce( out boundl nterface. getlnfo().getlPv6());
packet . set Header (v6Header) ;

}

gui . sendText (" Source: " + v6Header. get Source());

gui . sendText (" Dest: " + v6Header.getDest());

gui . sendText (" Forwardi ng packet to: " + outboundlnterface);

byt e[] outboundPacket = Array.concat (next MAC, packet . getBytes());

//send a SaanEvent to the appropriate outbound interface.
/1 This SaanEvent contains the service |evel anpng other things.
Prot ocol St ackEvent event = new Protocol StackEvent (
toString(),
this,
Pr ot ocol St ackEvent . get FronRout i ngAl gori t hniTol nt er f aceChannel (
i nterfaces.indexOt (outboundl nterface)),
out boundPacket ,
sl
next Hop) ;

try
control Exec. tal k(event);

}
catch (Channel Exception tde)

{
gui . sendText (tde.toString());
}
}
catch (Nul | Poi nt er Excepti on npe)

{
gui . sendText ("Next Hop is not in the ARPCache");
gui . sendText (" Packet Dropped\n");

}
}//end forwardPacket ()
[1]cw
/**

* Requeues packets not imediately handl ed while edge router
* pronotion or route deploynment takes place.
* @aram packet the packet that would have been dropped
* @eturn success of operation
*/

private bool ean requeueBest Ef f Pkt (| Pv6Packet packet)

//requeueing is only allowed one second out of every six
long checkTine = SystemcurrentTimeMI1is() - tinmeBestEffAmesty;
if (checkTine < 0)
{

return fal se;

else if (checkTine < (1000 * control Exec. get Ti meScal e()))
{

toString(),
this,

Pr ot ocol St ackEvent event = new Protocol StackEvent (
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Pr ot ocol St ackEvent . get Fr onNI CTol nt er f aceChannel (0),
packet . get Bytes());

try
control Exec. tal k(event);
}
cat ch(Channel Excepti on tde)
{
Systemout.println(tde.toString());
}
return true;
}
el se
{ . .
ti meBest Ef f Amesty += 5000 * control Exec. get Ti neScal e();
return fal se;
}
}
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APPENDIX G: MODIFICATIONS TO BASE PATH INFORMATION
BASE SOURCE CODE

/1[cw
public void processEdgeNotificati on (EdgeNotificati on edgeNotif)

nmyBest Ef f ort Manager . processEdgeNoti fi cati on(edgeNotif);
}

/1 [PS] - created to support inter-service borrow ng
/**
* Refreshes the QS information of a given path.
* @aram path the path to update.
* @aramdeltaDelay[] an array with the delay variations per Service Level.
* @aram deltalLossRate[] an array with the loss rate variations per SLevel.
* @eturn void.
*/
protected void refreshPat hQoS(
Pat h pat h,
short [] del tabDel ay,
short [] deltalLossRate)

{
test Msg("refreshPat hQS(" + path.getPathlD().toString() + ")");

Pat hQoS pat hQoS[] = path. get Pat hQoSArray();
int []1[] pathAvail abl eBW = pat hBandw dt h( pat h);

/'l For every Service Level, check the QoS attributes of this Path
for (byte sl = 0; sl < NUM OF_SERVICE LEVELS - 1; sl ++)

/] Set path QoS paraneters
if (sl == INT_SERV || sIl == DIFF_SERV) //Xi e-corey: renove CITRL/BE
fromthe bandw dth update

{
pat hQoS[ sl ] . set Avai | abl eBandw dt h( pat hAvai | abl eBWO][sl]);
pat hQoS[ sl ] . set Avai | abl eBandwi dt hl ncl udi ngBor r owi ng( pat hAvai | abl eBW1][sl]);

}
pat hQoS[ sl ] . updat ePat hDel ay(del t abDel ay[sl]);
pat hQoS[ sl ] . updat ePat hLossRat e(del t aLossRate[sl]);
}//end for-loop through all service levels

/1Tew
i f (nyBestEf fort Manager. gl obal Congesti onl sCccurring())

nmyBest Ef f ort Manager . proacti veMoni t or ( pat h,
pat hQoS[ BEST_EFFORT] . get Packet LossRate());

el se

nyBest Ef f ort Manager . reacti veMoni t or ( pat h,
pat hQoS[ BEST_EFFORT] . get Packet LossRate());

}
} // end of refreshPathQoS(Path, dDelay, dLR)

/1[PS] - redesigned to support of inter-service borrowing and to inprove
/1 efficiency

/**

* Receives and processes a LSA - extracts the vector of |SAs, determ nes the
* type of each | SA (Add, Renove or Update) and processes each of themin
* sequence according to their type.

* @aram LSA a LinkStateAdvertisenent object.

* @eturn void.

*/

public void processLSA (LinkStateAdvertisement LSA)

{
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/1[cw] constructor is TOO EARLY a place to call for this val ue
if (('iKnowhatTineltls) || (timeScale > 999))

ti meScal e = control Exec. get Ti meScal e() ;
i Knowat Ti neltls = true;
}

/1 Increase the LSA counter

i LsaCount er ++;

Vector interfaceSAs = LSA getl SAvector();

| Pv6Address routerl D = LSA. get Sender Router! D();

test Msg( " processLSA()");

bool ean i sNewRouter = fal se;
Integer thisNodelD = (Integer) htRouterlDtoNodel D.get(routerlD.toString());

String strNodelD =

(thisNodel D == null) ? "new router" : thisNodelD.toString();
gui . sendText (

"\ nProcess LSA nunmber " + ilLsaCounter + "\n" +

"\tRouter / Node ID: \t" + routerID+ " / " + strNodelD);

if (thisNodelD == null) // LSA is froma new NODE

{
/1 1f it is a New Node, assign it a new Nodel D
/1 then place the router in the router/node and node/router |ook-up tables
t hi sNodel D = new | nt eger (i Next Nodel D++) ;

ht Rout er | Dt oNodel D. put (routerID.toString(), thisNodelD);
ht Nodel Dt oRout er I D. put (t hi sNodel D, routerlD);
i sNewRouter = true;

}/1 End if for new router detection

/1 Step through the list of |ISA's and process each according to its type
Enuneration enum SAs = interfaceSAs. el enents();
whi | e (enuml SAs. hasMoreEl enents()) // Step through each ISAin turn
{
testMsg("Start processing new | SA");
InterfaceSA thisl SA = (InterfaceSA) enum SAs. next El enent () ;
byte type = thislSA getlnterfaceSAType();

I/l Use sinple if structure to determ ne the type of |SA
switch (type)
{

case InterfaceSA UPDATE: //Update Interface type
try
test Msg("I SA of type UPDATE. Going to update interface...");
gui . sendText ("I SA of type UPDATE. Going to update interface...");
updat el nterface(thislSA thisNodel D, routerlD, isNewRouter);
i sNewRout er = fal se;

catch (Exception e)

{
gui . sendText ("!!! An exception occurred in updating interface!");
e.printStackTrace();

}

br eak;

case InterfaceSA. REMOVE: // Renove Interface type
try

test Msg("1 SA of type REMOVE. Going to renpve interface");

gui . sendText ("I SA of type REMOVE. Going to renove interface...");
renovel nterface(thislSA thisNodelD, routerlD);

di spl ayPI B() ;
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catch (Exception e)

{
gui . sendText ("!!! An exception occurred in renoving interfacel");
e.printStackTrace();

}

br eak;

case InterfaceSA . SILENT: //[TW Silent Interface type

try
{
gui . sendText ("I SA of type SILENT.");
//[cw] The solution devel oped bel ow i s conservative pendi ng
/1 further investigation of how to admi nister and rebuild the
/1 PIBin this scenario. For BE, the path's BE bool ean is never
I/l reset so this path will never be assigned BE traffic again.
/1 When the BET receives code RED, it erases that path and repl aces
/1 it with the alternate for that destination. So...if the SILENT
/'l message was due to a tenporary network hiccup, resources will be
/1 wasted. Sonmehow, the PIB needs to "heal" itself here. For now,
/1 the working solution is to create a new bool ean nenber of inner
/'l class Path and reference that to deternmine if the path is usable.
//[cw] advise affected edge routers of broken BE paths
| Pv6Address sl nterfaceAdd = thisl SA getlnterfacel P();
Interfacelnfo sinterfacelnfo = (Interfacel nfo)
(htinterfaces. get(slnterfaceAdd.toString()));
Enureration al |l AffectedPaths = slnterfacelnfo.getPathlDs().elenents();
whil e (al | Af fect edPat hs. hasMor eEl ement s())
{
Integer thisPathlD = (Integer) allAffectedPaths. nextEl ement();
Path thisPath = (Path) htPaths.get(thisPathlD);
if ((thisPath.bBestEffortTraffic) && thisPath. bConnected)

myBest Ef f ort Manager . handl eBEpat hFai | ure(t hi sPat hl D. i nt Val ue());
}

the path is no | onger connected

t hi sPat h. bConnected = false;//[cw

/lactions to take left for further research

catch (Exception e)

{
gui . sendText ("!!! An exception occurred in processing interface slient
message! ") ;
e.printStackTrace();
}
br eak;

default: // Undefined type of |SA
gui . sendText (" Undefined type of ISA ");

}

} /1 End while statenent processing vector of |SAs

} /1 End processLSA()

/1]ew
/**
* | npl ementation of the First Shortest Path al gorithm
* @aramsrcRterlD the | Pv6 address of the source router.
* @aramdestRterl D the | Pv6 address of the destination router.
* @eturn the required path or null if no path was found.
*
/
private Path findPat hFSP(| Pv6Address srcRierl D, |Pv6Address destRterlD)

test Msg("findPat hFSP()");

Interfacelnfo interfacelnformation =
(Interfacelnfo) htinterfaces.get(srcRterlD. toString());
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int sourceNodelD = ((Interfacelnfo) htinterfaces
.get(srcRterID.toString())).getNodel D().intValue();

int destNodelD = ((Interfacelnfo) htlnterfaces
.get(destRterID.toString())).getNodel D().intVal ue();

Pat h bestPath = null;
Hasht abl e tabl e = new Hashtabl e();

/11 abel ed compound st at ement

st op:
for (int i =1; i < MAX_HOP_COUNT; i++)
{
test Msg("Hop count =" + i);

table = aPl[sourceNodel D] [ dest Nodel D] [i];
Enunerati on enum = tabl e. el enents();

i f (enum hasMoreEl ements())

{

/1 Cycle through each of the paths of the current hop count, between
/] source and destination nodes
whi | e (enum hasMor eEl ement s())

{

Integer currentPathlD = (Integer) enum nextEl enent();

/1 Extract current path information
best Path = (Path) htPaths.get(currentPathlD);

if ((!'bestPath.bBestEffortTraffic) && (bestPath.bestEffortTrafficCondition

I = Pat h. RED))
int avail abl eBandwi dth =
best Pat h. get Pat hSer vi ceLevel QoS( BEST_EFFORT)
. get Avai | abl eBandwi dt h() ;
/1
/1 1f available BWis greater than a minimum the flowis adnited
if (avail abl eBandwi dth >= Best_Effort_M ni num Bandwi dth) //Xi e-jan02
{
gui . sendText (
"\t The selected path is:\t" + bestPath.toString() + "\n" +
"\t Avai |l abl e bandwi dth: \t" + avail abl eBandwi dth + "kpbs");
break stop;
}//End of if structure
}
el se
best Path = nul | ;
}

}/ 1 End of while-Ioop
}/1End of if structure
}/1End of for-Ioop
}//End of |abeled stop structure
return best Pat h;

}/1End of findPathFSP() for Best Effort Service

/**
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*
*
*

| evel .
*

*

*

*/

I npl ementati on of the Shortest Wdest Path algorithmfor Best Effort.
The admi ssion procedure for BE requires revision. Currently, a BE flowis
adnmitted if there is nore than a m numum anopunt of path available BWin the BE svc

@aram srcRterlI D the | Pv6 address of the source router.
@aram destRterI D the |Pv6 address of the destination router.
@eturn the required path or null if no path was found.

private Path findPat hSWP(| Pv6Address srcRierl D, | Pv6Address destRterlD)

test Msg("findPat hSWP()");

Interfacelnfo interfacelnformati on =
(I'nterfacelnfo) htinterfaces.get(srcRterlD. toString());

int sourceNodel D = ((Interfacelnfo) htinterfaces
.get(srcRterID. toString())).getNodel D().intValue();

int destNodelD = ((Interfacelnfo) htinterfaces
.get(destRterID. toString())).getNodel D().intVal ue();

Path thisPath = null;
Path bestPath = null;
int thisAvail abl eBandwi dth = 0;
i nt bestAvail abl eBandwi dth = 0;

Hasht abl e tabl el = new Hashtabl e();

for (int i =1; i < MAX_HOP_COUNT; i ++)

{
test Msg("Hop count =" + i);
tabl el = aPI [ sourceNodel D] [ dest Nodel D] [i];
Enuneration enunl = tablel.el ements();

i f (enuml. hasMor eEl ement s())
{

/1 Cycle through each of the paths of the current hop count, between
//source and destination nodes
whi | e (enuml. hasMor eEl ement s())

{

Integer currentPathl D = (Integer) enuml. nextEl ement();

/1 Extract current path information
thisPath = (Path) htPaths.get(currentPathlD);

t hi sAvai | abl eBandwi dth =
t hi sPat h. get Pat hSer vi ceLevel QoS( BEST_EFFORT)
. get Avai | abl eBandwi dt h() ;

if (('thisPath.bBestEffortTraffic) && (thisPath.bestEffortTrafficCondition !=

Pat h. RED))

if (thisAvail abl eBandwi dth > best Avai | abl eBandwi dt h)
best Path = thi sPat h;

best Avai | abl eBandwi dt h = t hi sAvai | abl eBandwi dt h;

}
}

}/ /1 End of while-Ioop
}/1End of if structure

}/ 1 End of for-Iloop
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if (bestPath !'= null)

{
gui . sendText ("\t The selected path is:\t" + bestPath.toString() + "\n" +

"\t Avai |l abl e bandwi dth: \t" + bestAvail abl eBandwi dth + " kbps");
}

return best Pat h;

}//End of findPathSWP for Best Effort Service

[1Tew

/**

* I nplementati on of the Shortest Wdest Mst Disjoint Path algorithmfor Best Effort.

* The admi ssion procedure for BE requires revision. Currently, a BE flowis

* admtted if there is nore than a m numum anount of path available BWin the BE svc
| evel .

* @aramsrcRterlD the | Pv6 address of the source router.

* @aramdestRterI D the | Pv6 address of the destination router.

* @eturn the required path or null if no path was found.

*/

private Path findPat hSWWDP(| Pv6Address srcRterl D, |Pv6Address destRterl D, Path
di sj oi nt Pat h)

test Msg("findPat hSWWDP() ") ;

Interfacelnfo interfacelnformati on =
(I'nterfacelnfo) htinterfaces.get(srcRterlD. toString());

int sourceNodel D = ((Interfacelnfo) htinterfaces
.get(srcRterID.toString())).getNodel DX).intValue();

int destNodelD = ((Interfacelnfo) htlnterfaces
.get(destRterID. toString())).getNodel D().intVal ue();

Path thisPath = null;
Path bestPath = null;
int thisAvail abl eBandwi dth = 0;
i nt bestAvail abl eBandwi dth = 0;

int thislntersection = 999;
int bestlntersection = 999;

Hasht abl e tabl e = new Hashtabl e();

for (int i =1; i < MAX_HOP_COUNT; i ++)

{
test Msg("Hop count =" + i);
tabl e = aPl [ sourceNodel D] [ dest Nodel D] [i];
Enuneration enum = table. el enents();

if (enum hasMoreEl ements())

{
/1 Cycle through each of the paths of the current hop count, between
//source and destination nodes
whi | e (enum hasMor eEl ement s())

{

I nteger currentPathl D = (I nteger) enum nextEl enent();

/1 Extract current path information
thi sPath = (Path) htPaths.get(currentPathlD);
t hi sAvai | abl eBandwi dth =
t hi sPat h. get Pat hSer vi ceLevel QoS( BEST_EFFORT)
. get Avai | abl eBandwi dt h() ;

thislntersection = 0;

Enurnerati on nyLinks = thisPath. getlnterfaceSequence(). el enents();
whi | e (nyLi nks. hasMor eEl ement s())
{
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| Pv6Address thisLink = (I Pv6Address)
(myLi nks. next El enent () );
Enureration |inksToAvoi d = disjointPath. getlnterfaceSequence().elenments();
while (linksToAvoi d. hasMor eEl ement s())

if (thisLink == ((1Pv6Address) (IinksToAvoid.nextEl ement())))

thi sl ntersection++;

}
}
}

if (('thisPath.bBestEffortTraffic) && (thisPath.bestEffortTrafficCondition !=
Pat h. RED) )

if (thislntersection < bestlntersection)

best Path = thi sPat h;
best Avai | abl eBandwi dt h = t hi sAvai | abl eBandwi dt h;
bestIntersection = thislntersection;

else if (thislntersection == bestlntersection)
i f (thisAvail abl eBandwi dt h > best Avai | abl eBandwi dt h)

best Path = thi sPat h;
best Avai | abl eBandwi dt h = t hi sAvai | abl eBandwi dt h;
bestIntersection = thislntersection;
}
}
}

}/ 1 End of while-Ioop
}//1End of if structure
}/1End of for-Ioop
if (bestPath != null)

gui . sendText ("\t The selected path is:\t" + bestPath.toString() + "\n" +
"\t Avai | abl e bandwi dth: \t" + bestAvail abl eBandwi dth + " kbps");
}

return best Pat h;

}/ 1 End of findPathSWWDP for Best Effort Service

/1Tew

/**

* | nplementation of the Shortest Wdest LeastCongested Path algorithmfor Best
Effort.

* The admi ssion procedure for BE requires revision. Currently, a BE flowis

* admitted if there is nore than a m numum anount of path available BWin the BE svc
| evel .

* @aramsrcRterlD the | Pv6 address of the source router.

* @aramdestRterlD the | Pv6 address of the destination router.

* @eturn the required path or null if no path was found.

*/

private Path findPat hSW.CP(| Pv6Address srcRterl D, |Pv6Address destRterlD)

test Msg("findPat hSW.CP()");

Interfacelnfo interfacelnformation =
(Interfacelnfo) htinterfaces.get(srcRterlD. toString());

int sourceNodelD = ((Interfacelnfo) htlnterfaces
.get(srcRterID.toString())).getNodel D().intValue();
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int destNodelD = ((Interfacelnfo) htlnterfaces
.get(destRterID.toString())).getNodel D().intVal ue();

Path thisPath = null;
Path bestPath = nul|;
i nt thisAvail abl eBandwi dth = 0;
i nt best Avail abl eBandwi dth = 0;

short thisCongestion = 10000; //100%
short best Congesti on = 10000;

Hasht abl e tabl e = new Hashtabl e();

for (int i =1; i < MAX_HOP_COUNT; i++)

{
test Msg("Hop count =" + i);
table = aPl [ sourceNodel D] [ dest Nodel D] [i];
Enunerati on enum = tabl e. el enents();

i f (enum hasMoreEl ements())

{

/1 Cycle through each of the paths of the current hop count, between
//source and destination nodes
whi | e (enum hasMor eEl ement s())

{

Integer currentPathlD = (Integer) enum nextEl enent();

/1 Extract current path information
thisPath = (Path) htPaths.get(currentPathlD);
t hi sAvai | abl eBandwi dth =
t hi sPat h. get Pat hSer vi ceLevel QoS( BEST_EFFORT)
. get Avai | abl eBandwi dt h() ;
t hi sCongesti on = thi sPath. get Pat hQoSArray() [ BEST_EFFORT] . get Packet LossRate();

if (('thisPath.bBestEffortTraffic) && (thisPath.bestEffortTrafficCondition !=
Pat h. RED) )

if (thisCongestion < bestCongestion)
best Path = thi sPat h;
best Avai | abl eBandwi dt h = t hi sAvai | abl eBandwi dt h;
best Congestion = thi sCongestion;
}
else if (thisCongestion == best Congestion)
i f (thisAvail abl eBandwi dt h > best Avai | abl eBandwi dt h)

best Path = thi sPat h;
best Avai | abl eBandwi dt h = t hi sAvai | abl eBandwi dt h;
best Congesti on = thi sCongesti on;

}
}
}

}/ 1 End of while-Ioop
}/1End of if structure
}/1End of for-Ioop
if (bestPath !'= null)

gui . sendText ("\t The selected path is:\t" + bestPath.toString() + "\n" +
"\t Avai | abl e bandwi dth: \t" + bestAvail abl eBandwi dth + " kbps");

}

return best Pat h;
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}/1End of findPathSW.CP for Best Effort Service

/1Tew
/**
* Updates attributes to reflect new BE traffic.
* @eturn success of operation
*
/
protected boolean initiateBestEffortTraffic()
{
bBestEffort Traffic = true;
best Ef fort Traffi cConditi on = GREEN,
timeBEi nitiated = SystemcurrentTineM I lis();
ti meLast Advi sorySent = 0;
ti meCondi ti onRed = O;
return true;

}
/1] ew

/**

* Updates attributes to reflect ternmination of BE traffic.
* @eturn success of operation

*/

protected bool ean term nateBestEffortTraffic()

bBestEffortTraffic = fal se;
bestEffort Traffi cConditi on = GRAY;
return true;

}
/1] ew

/**

* Updates attributes to reflect new congestion.
* @eturn success of operation

*/

protected bool ean newCongesti on()

bestEffortTrafficCondition = YELLOW
ti meLast Advi sorySent = SystemcurrentTimneMIlis();
return true;

}
/1] cw

/**

* Updates attributes to reflect congestion cleared.
* @eturn success of operation

*/

protected bool ean congestionC eared()

bestEf fort Traffi cCondi ti on = GREEN;
return true;

}
/1] cw

/**
* Updates attributes to reflect being expired for BE traffic.
* @eturn success of operation
*
/
protected bool ean expi reBEpat h()

{
if ((bestEffortTrafficCondition == GREEN) ||
(bestEffortTrafficCondition == YELLOW)

{
bestEffort Traffi cConditi on = RED;
bBestEffortTraffic = fal se;
ti meConditi onRed = SystemcurrentTimeM I 1is();
return true;

}

el se
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return fal se;

}
/1] cw

/**

* Updates attributes to reflect being unexpired for BE traffic.
* @eturn success of operation

*/

protected bool ean unexpi reBEpat h()

if ((bestEffortTrafficCondition == RED) && bConnect ed)

bestEf fort Traffi cConditi on = GREEN,
return true;

}

el se

return fal se;

}
}
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I nt

/

APPENDIX H: MODIFICATIONS TO OTHER SAAM SOURCE
CODE

/'l create | PV6 packet
/1Tew

/1 For BE traffic, assign random source addresses to sinmulate internet traffic.
/1 Note: when a packet |eaves Flow CGenerator with an all-zero source address,
/1 it will be assigned the sending interface's address. The code bel ow al | ows
/1 the Flow Generator to sinulate traffic coming in fromoutside since it gives
/] it a non-zero source address. For BE testing, THI S IS THE | NTENT.

if (typeOService.equal s("BestEffort"))

int randNum = (int) ((9 - 0) * (Math.randon()) + 0);
try
{

i pv6Header . set Sour ce(| Pv6Address. getByNane("1.1.1.1.1.1.1.1.1.1.1.1.1.1.1." +

(new
eger (randNum)).toString()));

catch (UnknownHost Exception uhe)

gui . sendText ("Error setting random Best Effort header.");

}
}

* %

* Forwards the packet that was just dequeued froma service |evel
* queue to the outbound NetworklnterfaceCard.

* @aram sl The service level this packet was dequeued from

* @aram packet the byte array representation of this packet.

*/

private void forwardPacket (int sl, byte [] packet)

{

/1Since the nextHop was added to the packet before
//the packet was enqueued into the Service Level Queue,
//we strip it off here.

/] Xi e-decO1:
/'l Need to scal e packet transmission tinme based on tine scale, packet length (bits),
/1 and link speed (bits/second); insert a 200 ns constant delay tenporarily
/] May require a timer to determine the end of transmission for this packet.
//[cw] 1000 is for s-to-ms, 8 is for B-to-b

/1 bits/Kpbs = nilliseconds
timeEl apsed = SystemcurrentTineMIlis() +
((packet.length * 8) / |inkSpeed) * tineScale;

| Pv6Address nextHop = null;
try
{
next Hop = new | Pv6Addr ess(Array. get SubArray(packet, 0, |Pv6Address.|length));

}
catch (UnknownHost Exception uhe)

{
gui . sendText (toString() + ": " + uhe.toString());

}
gui . sendText (" Next Hop: " + nextHop.toString());
| Pv6Packet v6Packet = null;

try
v6Packet = new | Pv6Packet ( packet);

}
catch (UnknownHost Excepti on uhe)
{
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gui . sendText (" Schedul er: " + uhe.toString());

gui . sendText (" Forwardi ng packet to ny NIC, Payload length =" +
v6Packet . get Payl oad() .| engt h);

Prot ocol St ackEvent event = new Protocol St ackEvent (
toString(),
this,
out BoundChannel ,
packet,
sl,
next Hop) ;

try
control Exec. tal k(event);

}
catch (Channel Exception tde)
{

}

gui . sendText (tde.toString());

/1[cw] corey's proposed sol ution
long now = SystemcurrentTimeM I 1is();
if (now < timeEl apsed)
{
try
{

Thr ead. sl eep(ti neEl apsed - now);
catch (InterruptedException ie)
{

gui . sendText (" Thread sl eep problemin nodule " +
this.toString());

}

}/ 1 end forwardPacket ()
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